Volume 37 Issue 4
Jul.  2016
Turn off MathJax
Article Contents
Li-Fang JIN, Jin-Song LI. Generation of genetically modified mice using CRISPR/Cas9 and haploid embryonic stem cell systems. Zoological Research, 2016, 37(4): 205-213. doi: 10.13918/j.issn.2095-8137.2016.4.205
Citation: Li-Fang JIN, Jin-Song LI. Generation of genetically modified mice using CRISPR/Cas9 and haploid embryonic stem cell systems. Zoological Research, 2016, 37(4): 205-213. doi: 10.13918/j.issn.2095-8137.2016.4.205

Generation of genetically modified mice using CRISPR/Cas9 and haploid embryonic stem cell systems

doi: 10.13918/j.issn.2095-8137.2016.4.205
Funds:  This study was supported by the National Natural Science Foundation of China (3731530048C1202)
More Information
  • Corresponding author: Li-Fang JIN
  • Received Date: 2016-04-11
  • Rev Recd Date: 2016-05-05
  • Publish Date: 2016-07-18
  • With the development of high-throughput sequencing technology in the post-genomic era, researchers have concentrated their efforts on elucidating the relationships between genes and their corresponding functions. Recently, important progress has been achieved in the generation of genetically modified mice based on CRISPR/Cas9 and haploid embryonic stem cell (haESC) approaches, which provide new platforms for gene function analysis, human disease modeling, and gene therapy. Here, we review the CRISPR/Cas9 and haESC technology for the generation of genetically modified mice and discuss the key challenges in the application of these approaches.
  • loading
  • [1]
    Bai MZ, Wu YX, Li JS. 2016. Generation and application of mammalian haploid embryonic stem cells. Journal of Internal Medicine, doi: 10.1111/joim.12503.
    [2]
    Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U. 2009. Breaking the code of DNA binding specificity of TAL-type Ⅲ effectors. Science, 326(5959):1509-1512.
    [3]
    Canver MC, Bauer DE, Dass A, Yien YY, Chung J, Masuda T, Maeda T, Paw BH, Orkin SH. 2014. Characterization of genomic deletion efficiency mediated by clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells. The Journal of Biological Chemistry, 289(31):21312-21324.
    [4]
    Capecchi MR. 1989. The new mouse genetics:altering the genome by gene targeting. Trends in Genetics, 5(3):70-76.
    [5]
    Chapman KM, Medrano GA, Jaichander P, Chaudhary J, Waits AE, Nobrega MA, Hotaling JM, Ober C, Hamra FK. 2015. Targeted germline modifications in rats using CRISPR/Cas9 and spermatogonial stem cells. Cell Reports, 10(11):1828-1835.
    [6]
    Chen YC, Zheng YH, Kang Y, Yang WL, Niu YY, Guo XY, Tu ZC, Si CY, Wang H, Xing RX, Pu XQ, Yang SH, Li SH, Ji WZ, Li XJ. 2015. Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9. Human Molecular Genetics, 24(13):3764-3774.
    [7]
    Chiou SH, Winters IP, Wang J, Naranjo S, Dudgeon C, Tamburini FB, Brady JJ, Yang D, Grüner BM, Chuang CH, Caswell DR, Zeng H, Chu P, Kim GE, Carpizo DR, Kim SK, Winslow MM. 2015. Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing. Genes & Development, 29(14):1576-1585.
    [8]
    Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121):819-823.
    [9]
    Elling U, Taubenschmid J, Wirnsberger G, O'Malley R, Demers SP, Vanhaelen Q, Shukalyuk AI, Schmauss G, Schramek D, Schnuetgen F, von Melchner H, Ecker JR, Stanford WL, Zuber J, Stark A, Penninger JM. 2011. Forward and reverse genetics through derivation of haploid mouse embryonic stem cells. Cell Stem Cell, 9(6):563-574.
    [10]
    Fujii W, Kawasaki K, Sugiura K, Naito K. 2013. Efficient generation of large-scale genome-modified mice using gRNA and CAS9 endonuclease. Nucleic Acids Research, 41(20):e187.
    [11]
    Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen YW, Whitehead EH, Guimaraes C, Panning B, Ploegh HL, Bassik MC, Qi LS, Kampmann M, Weissman JS. 2014. Genome-scale CRISPR-mediated control of gene repression and activation. Cell, 159(3):647-661.
    [12]
    Hai T, Teng F, Guo RF, Li W, Zhou Q. 2014. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Research, 24(3):372-375.
    [13]
    Honda A, Hirose M, Sankai T, Yasmin L, Yuzawa K, Honsho K, Izu H, Iguchi A, Ikawa M, Ogura A. 2015. Single-step generation of rabbits carrying a targeted allele of the tyrosinase gene using CRISPR/Cas9. Experimental Animals, 64(1):31-37.
    [14]
    Horii T, Hatada I. 2015. Genome editing using mammalian haploid cells. International Journal of Molecular Sciences, 16(10):23604-23614.
    [15]
    Horii T, Morita S, Kimura M, Kobayashi R, Tamura D, Takahashi RU, Kimura H, Suetake I, Ohata H, Okamoto K, Tajima S, Ochiya T, Abe Y, Hatada I. 2013. Genome engineering of mammalian haploid embryonic stem cells using the Cas9/RNA system. PeerJ, 1:e230.
    [16]
    Hwang WY, Fu YF, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK. 2013. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology, 31(3):227-229.
    [17]
    Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. 1987. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169(12):5429-5433.
    [18]
    Jaenisch R, Mintz B. 1974. Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA. Proceedings of the National Academy of Sciences of the United States of America, 71(4):1250-1254.
    [19]
    Jansen R, van Embden JDA, Gaastra W, Schouls LM. 2002. Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology, 43(6):1565-1575.
    [20]
    Jiang WY, Bikard D, Cox D, Zhang F, Marraffini LA. 2013. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology, 31(3):233-239.
    [21]
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096):816-821.
    [22]
    Kang Y, Zheng B, Shen B, Chen YC, Wang L, Wang JY, Niu YY, Cui YQ, Zhou JK, Wang H, Guo XJ, Hu B, Zhou Q, Sha JH, Ji WZ, Huang XX. 2015. CRISPR/Cas9-mediated Dax1 knockout in the monkey recapitulates human AHC-HH. Human Molecular Genetics, 24(25):7255-7264.
    [23]
    Kiani S, Chavez A, Tuttle M, Hall RN, Chari R, Ter-Ovanesyan D, Qian J, Pruitt BW, Beal J, Vora S, Buchthal J, Kowal EJ, Ebrahimkhani MR, Collins JJ, Weiss R, Church G. 2015. Cas9 gRNA engineering for genome editing, activation and repression. Nature Methods, 12(11):1051-1054.
    [24]
    Kim YG, Cha J, Chandrasegaran S. 1996. Hybrid restriction enzymes:zinc finger fusions to Fok I cleavage domain. Proceedings of the National Academy of Sciences of the United States of America, 93(3):1156-1160.
    [25]
    Kimura Y, Oda M, Nakatani T, Sekita Y, Monfort A, Wutz A, Mochizuki H, Nakano T. 2015. CRISPR/Cas9-mediated reporter knock-in in mouse haploid embryonic stem cells. Scientific Reports, 5:10710.
    [26]
    Koike-Yusa H, Li YL, Tan EP, Valasco-Herrera Mdel C, Yusa K. 2014. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nature Biotechnology, 32(3):267-273.
    [27]
    Konermann S, Brigham MD, Trevino AE, Hsu PD, Heidenreich M, Cong L, Platt RJ, Scott DA, Church GM, Zhang F. 2013. Optical control of mammalian endogenous transcription and epigenetic states. Nature, 500(7463):472-476.
    [28]
    Kraft K, Geuer S, Will AJ, Chan WL, Paliou C, Borschiwer M, Harabula I, Wittler L, Franke M, Ibrahim DM, Kragesteen BK, Spielmann M, Mundlos S, Lupiáñez DG, Andrey G. 2015. Deletions, inversions, duplications:engineering of structural variants using CRISPR/Cas in mice. Cell Reports, 10(5):833-839.
    [29]
    Leeb M, Dietmann S, Paramor M, Niwa H, Smith A. 2014. Genetic exploration of the exit from self-renewal using haploid embryonic stem cells. Cell Stem Cell, 14(3):385-393.
    [30]
    Leeb M, Walker R, Mansfield B, Nichols J, Smith A, Wutz A. 2012. Germline potential of parthenogenetic haploid mouse embryonic stem cells. Development, 139(18):3301-3305.
    [31]
    Leeb M, Wutz A. 2011. Derivation of haploid embryonic stem cells from mouse embryos. Nature, 479(7371):131-134.
    [32]
    Li DL, Qiu ZW, Shao YJ, Chen YT, Guan YT, Liu MZ, Li YM, Gao N, Wang LR, Lu XL, Zhao YX, Liu MY. 2013a. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nature Biotechnology, 31(8):681-683.
    [33]
    Li W, Li X, Li TD, Jiang MG, Wan HF, Luo GZ, Feng CJ, Cui XL, Teng F, Yuan Y, Zhou Q, Gu Q, Shuai L, Sha JH, Xiao YM, Wang L, Liu ZH, Wang XJ, Zhao XY, Zhou Q. 2014. Genetic modification and screening in rat using haploid embryonic stem cells. Cell Stem Cell, 14(3):404-414.
    [34]
    Li W, Shuai L, Wan HF, Dong MZ, Wang M, Sang LS, Feng CJ, Luo GZ, Li TD, Li X, Wang LB, Zheng QY, Sheng C, Wu HJ, Liu ZH, Liu L, Wang L, Wang XJ, Zhao XY, Zhou Q. 2012. Androgenetic haploid embryonic stem cells produce live transgenic mice. Nature, 490(7420):407-411.
    [35]
    Li W, Teng F, Li TD, Zhou Q. 2013b. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nature Biotechnology, 31(8):684-686.
    [36]
    Li X, Cui XL, Wang JQ, Wang YK, Li YF, Wang LY, Wan HF, Li TD, Feng GH, Shuai L, Li ZK, Gu Q, Hao J, Wang L, Zhao XY, Liu ZH, Wang XJ, Li W, Zhou Q. 2016a. Generation and application of mouse-rat allodiploid embryonic stem cells. Cell, 164(1-2):279-292.
    [37]
    Li ZK, Wan HF, Feng GH, Wang LY, He ZQ, Wang YK, Wang XJ, Li W, Zhou Q, Hu BY. 2016b. Birth of fertile bimaternal offspring following intracytoplasmic injection of parthenogenetic haploid embryonic stem cells. Cell Research, 26(1):135-138.
    [38]
    Liang PP, Xu YW, Zhang XY, Ding CH, Huang R, Zhang Z, Lv J, Xie XW, Chen YX, Li YJ, Sun Y, Bai YF, Zhou SY, Ma WB, Zhou CQ, Huang JJ. 2015. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein & Cell, 6(5):363-372.
    [39]
    Long CZ, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN. 2014. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science, 345(6201):1184-1188.
    [40]
    Lupiáñez DG, Kraft K, Heinrich V, Krawitz P, Brancati F, Klopocki E, Horn D, Kayserili H, Opitz JM, Laxova R, Santos-Simarro F, Gilbert-Dussardier B, Wittler L, Borschiwer M, Haas SA, Osterwalder M, Franke M, Timmermann B, Hecht J, Spielmann M, Visel A, Mundlos S. 2015. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell, 161(5):1012-1025.
    [41]
    Maeder ML, Linder SJ, Cascio VM, Fu YF, Ho QH, Joung JK. 2013. CRISPR RNA-guided activation of endogenous human genes. Nature Methods, 10(10):977-979.
    [42]
    Maione B, Lavitrano M, Spadafora C, Kiessling AA. 1998. Sperm-mediated gene transfer in mice. Molecular Reproduction Development, 50(4):406-409.
    [43]
    Makarova KS, Wolf YI, Aikhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJJ, Charpentier E, Haft DH, Horvath P, Moineau S, Mojica FJ, Terns RM, Terns MP, White MF, Yakunin AF, Garrett RA, van der Oost J, Backofen R, Koonin EV. 2015. An updated evolutionary classification of CRISPR-Cas systems. Nature Reviews Microbiology, 13(11):722-736.
    [44]
    Mali P, Yang LH, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. 2013. RNA-guided human genome engineering via Cas9. Science, 339(6121):823-826.
    [45]
    Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL. 2015. Increasing the efficiency of precise genome editing with CRISPR/Cas9 by inhibition of nonhomologous end joining. Nature Biotechnology, 33(5):538-542.
    [46]
    Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, Watanabe T, Kanai T, Sato T. 2015. Modeling colorectal cancer using CRISPR/Cas9-mediated engineering of human intestinal organoids. Nature Medicine, 21(3):256-262.
    [47]
    Miller JC, Tan SY, Qiao GJ, Barlow KA, Wang JB, Xia DF, Meng XD, Paschon DE, Leung E, Hinkly SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Umov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ. 2011. A TALE nuclease architecture for efficient genome editing. Nature Biotechnology, 29(2):143-148.
    [48]
    Mougiakos I, Bosma EF, de Vos WM, van Kranenburg R, van der Oost J. 2016. Next Generation Prokaryotic Engineering:The CRISPR-Cas Toolkit. Trends in Biotechnology, 34(7):575-587.
    [49]
    Ni W, Qiao J, Hu SW, Zhao XX, Regouski M, Yang M, Polejaeva IA, Chen CF. 2014. Efficient gene knockout in goats using CRISPR/Cas9 system. PLoS One, 9(9):e106718.
    [50]
    Niu YY, Shen B, Cui YQ, Chen YC, Wang JY, Wang L, Kang Y, Zhao XY, Si W, Li W, Xiang AP, Zhou JK, Guo XJ, Bi Y, Si CY, Hu B, Dong GY, Wang H, Zhou ZM, Li TQ, Tan T, Pu XQ, Wang F, Ji SH, Zhou Q, Huang XX, Ji WZ, Sha JH. 2014. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell, 156(4):836-843.
    [51]
    O'Connell MR, Oakes BL, Sternberg SH, East-Seletsky A, Kaplan M, Doudna JA. 2014. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature, 516(7530):263-266.
    [52]
    Palmiter RD, Brinster RL, Hammer RE, Trumbauer ME, Rosenfeld MG, Birnberg NC, Evans RM. 1982. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature, 300(5893):611-615.
    [53]
    Platt RJ, Chen SD, Zhou Y, Yim MJ, Swiech L, Kempton HR, Dahlman JE, Parnas O, Eisenhaure TM, Jovanovic M, Graham DB, Jhunjhunwala S, Heidenreich M, Xavier RJ, Langer R, Anderson DG, Hacohen N, Regev A, Feng GP, Sharp PA, Zhang F. 2014. CRISPR/Cas9 knockin mice for genome editing and cancer modeling. Cell, 159(2):440-455.
    [54]
    Porteus MH, Baltimore D. 2003. Chimeric nucleases stimulate gene targeting in human cells. Science, 300(5620):763.
    [55]
    Ramakrishna S, Kwaku Dad AB, Beloor J, Gopalappa R, Lee SK, Kim H. 2014. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Research, 24(6):1020-1027.
    [56]
    Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F. 2013. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 154(6):1380-1389.
    [57]
    Rouet P, Smih F, Jasin M. 1994. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Molecular and Cellular Biology, 14(12):8096-8106.
    [58]
    Sagi I, Chia G, Golan-Lev T, Peretz M, Weissbein U, Sui L, Sauer MV, Yanuka O, Egli D, Benvenisty N. 2016. Derivation and differentiation of haploid human embryonic stem cells. Nature, 532(7597):107-111.
    [59]
    Sander JD, Joung JK. 2014. CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 32(4):347-355.
    [60]
    Schnieke AE, Kind AJ, Ritchie WA, Mycock K, Scott AR, Ritchie M, Wilmut I, Colman A, Campbell KH. 1997. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science, 278(5346):2130-2133.
    [61]
    Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, Heckl D, Ebert BL, Root DE, Doench JG, Zhang F. 2014. Genome-scale CRISPR/Cas9 knockout screening in human cells. Science, 343(6166):84-87.
    [62]
    Shen B, Zhang J, Wu HY, Wang JY, Ma K, Li Z, Zhang XG, Zhang PM, Huang XX. 2013. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Research, 23(5):720-723.
    [63]
    Shi LY, Yang H, Li JS. 2012. Haploid embryonic stem cells:an ideal tool for mammalian genetic analyses. Protein & Cell, 3(11):806-810.
    [64]
    Smih F, Rouet P, Romanienko PJ, Jasin M. 1995. Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells. Nucleic Acids Research, 23(24):5012-5019.
    [65]
    Stankiewicz P, Lupski JR. 2010. Structural variation in the human genome and its role in disease. Annual Review of Medicine, 61:437-455.
    [66]
    Wang HY, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R. 2013. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 153(4):910-918.
    [67]
    Wang T, Wei JJ, Sabatini DM, Lander ES. 2014. Genetic Screens in human cells using the CRISPR/Cas9 system. Science, 343(6166):80-84.
    [68]
    Wiles MV, Qin WN, Cheng AW, Wang HY. 2015. CRISPR/Cas9-mediated genome editing and guide RNA design. Mammalian Genome, 26(9-10):501-510.
    [69]
    Wu YX, Liang D, Wang YH, Bai MZ, Tang W, Bao SM, Yan ZQ, Li DS, Li JS. 2013. Correction of a genetic disease in mouse via use of CRISPR/Cas9. Cell Stem Cell, 13(6):659-662.
    [70]
    Wu YX, Zhou H, Fan XY, Zhang Y, Zhang M, Wang YH, Xie ZF, Bai MZ, Yin Q, Liang D, Tang W, Liao JY, Zhou CK, Liu WJ, Zhu P, Guo HS, Pan H, Wu CL, Shi HJ, Wu LG, Tang FC, Li JS. 2015. Correction of a genetic disease by CRISPR/Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Research, 25(1):67-79.
    [71]
    Wutz A. 2015. Haploid mouse embryonic stem cells:rapid genetic screening and germline transmission. The Annual Review of Cell and Developmental Biology, 30:705-722.
    [72]
    Xue W, Chen SD, Yin H, Tammela T, Papagiannakopoulos T, Joshi NS, Cai WX, Yang G, Bronson R, Crowley DG, Zhang F, Anderson DG, Sharp PA, Jacks T. 2014. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature, 514(7522):380-384.
    [73]
    Yang H, Liu Z, Ma Y, Zhong CQ, Yin Q, Zhou CK, Shi LY, Cai YJ, Zhao HZ, Wang H, Tang F, Wang Y, Zhang CC, Liu XY, Lai DM, Jin Y, Sun Q, Li JS. 2013a. Generation of haploid embryonic stem cells from Macaca fascicularis monkey parthenotes. Cell Research, 23(10):1187-1200.
    [74]
    Yang H, Shi LY, Wang BA, Liang D, Zhong CQ, Liu W, Nie YZ, Liu J, Zhao J, Gao X, Li DS, Xu GL, Li JS. 2012. Generation of genetically modified mice by oocyte injection of androgenetic haploid embryonic stem cells. Cell, 149(3):605-617.
    [75]
    Yang H, Wang HY, Shivalila CS, Cheng AW, Shi LY, Jaenisch R. 2013b. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell, 154(6):1370-1379.
    [76]
    Yi MS, Hong N, Hong YH. 2009. Generation of Medaka fish haploid embryonic stem cells. Science, 326(5951):430-433.
    [77]
    Yin H, Xue W, Chen SD, Bogorad RL, Benedetti E, Grompe M, Koteliansky V, Sharp PA, Jacks T, Anderson DG. 2014. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nature Biotechnology, 32(6):551-553.
    [78]
    Zalatan JG, Lee ME, Almeida R, Gilbert LA, Whitehead EH, La Russa M, Tsai JC, Weissman JS, Dueber JE, Qi LS, Lim WA. 2015. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell, 160(1-2):339-350.
    [79]
    Zhang LQ, Jia RR, Palange NJ, Satheka AC, Togo J, An Y, Humphrey M, Ban LY, Ji Y, Jin HH, Feng XC, Zheng YW. 2015. Large genomic fragment deletions and insertions in mouse using CRISPR/Cas9. PLoS One, 10(3):e0120396.
    [80]
    Zhong CQ, Xie ZF, Yin Q, Dong R, Yang SM, Wu YX, Yang L, Li JS. 2016a. Parthenogenetic haploid embryonic stem cells efficiently support mouse generation by oocyte injection. Cell Research, 26(1):131-134.
    [81]
    Zhong CQ, Yin Q, Xie ZF, Bai MZ, Dong R, Tang W, Xing YH, Zhang H, Yang S, Chen LL, Bartolomei MS, Ferguson-Smith A, Li DS, Yang L, Wu YX, Li JS. 2015. CRISPR/Cas9-mediated genetic screening in mice with haploid embryonic stem cells carrying a guide RNA library. Cell Stem Cell, 17(2):221-232.
    [82]
    Zhong CQ, Zhang ML, Yin Q, Zhao H, Wang Y, Huang SX, Tao WR, Wu KL, Chen ZJ, Li JS. 2016b. Generation of human haploid embryonic stem cells from parthenogenetic embryos derived by microsurgical removal of male pronucleus. Cell Research, 26(6)743-746..
    [83]
    Zou QJ, Wang XM, Liu YZ, Ouyang Z, Long HB, Wei S, Xin JG, Zhao BT, Lai SS, Shen J, Ni QC, Yang HQ, Zhong HL, Li L, Hu MH, Zhang QJ, Zhou ZD, He JX, Yan QM, Fan NN, Zhao Y, Liu ZM, Guo L, Huang J, Zhang GG, Ying J, Lai LX, Gao X. 2015. Generation of gene-target dogs using CRISPR/Cas9 system. Journal of Molecular Cell Biology, 7(6):580-583.
    [84]
    Zuckermann M, Hovestadt V, Knobbe-Thomsen CB, Zapatka M, Northcott PA, Schramm K, Belic J, Jones DTW, Tschida B, Moriarity B, Largaespada D, Roussel MF, Korshunov A, Reifenberger G, Pfister SM, Lichter P, Kawauchi D, Gronych J. 2015. Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling. Nature Communications, 6:7391.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2147) PDF downloads(2137) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return