2019 Vol. 40, No. 4

Full issue
Contents
2019, 40(4)
On 20 June 2019, Clarivate Analytics (2019) announced its Journal Citation Reports of 2018. From this, Zoological Research (ZR) received its first impact factor based on citations in 2018 for indexed papers published during 2016 to 2017. Although the new impact factor (1.556) is modest, it ranks ZR at 52 among the 170 SCI journals (quartile 2) in the Zoology category. This excellent result is not only a reflection of your enduring support, but also in recognition of our efforts to boost ZR from a Chinese-language only journal in 1980 to an English-language only journal of international standing by 2014.
Research highlight
Prolonged milk provisioning and extended parental care for nutritionally independent offspring, previously considered to only co-occur in long-lived mammals (Clutton-Brock, 1991; Royle et al., 2012), were recently reported in the reproduction of the milking spider, Toxeus magnus (Chen et al. 2018). Newly hatched T. magnus spiderlings require 53 days to develop to maturity, with an average adult body length of 6.6 mm. The mother provides milk droplets to her newly hatched spiderlings until they develop into subadults (~38 days old), during which their body lengths increase from 0.9 mm at birth to 5.3 mm at weaning. Although spiderlings can forage for themselves at around 20 days old, they remain in the breeding nest for weeks after maturity.
Articles
We present a morphological and molecular assessment of the Microhyla fauna of Myanmar based on new collections from central (Magway Division) and northern (Kachin State) parts of the country. In total, six species of Microhyla are documented, including M. berdmorei, M. heymonsi, M. butleri, M. mukhlesuri and two new species described from the semi-arid savanna-like plains of the middle part of the Irrawaddy (Ayeyarwady) River Valley. We used a 2 481 bp long 12S rRNA–16S rRNA fragment of mtDNA to hypothesize genealogical relationships within Microhyla. We applied an integrative taxonomic approach combining molecular, morphological, and acoustic lines of evidence to evaluate the taxonomic status of Myanmar Microhyla. We demonstrated that the newly discovered populations of Microhyla sp. from the Magway Division represent two yet undescribed species. These two new sympatric species are assigned to the M. achatina species group, with both adapted to the seasonally dry environments of the Irrawaddy Valley. Microhyla fodiens sp.nov. is a stout-bodied species with a remarkably enlarged shovel-like outer metatarsal tubercle used for burrowing and is highly divergent from other known congeners (P-distance≥8.8%). Microhyla irrawaddy sp. nov. is a small-bodied slender frog reconstructed as a sister species to M. kodial from southern India (P-distance=5.3%); however, it clearly differs from the latter both in external morphology and advertisement call parameters. Microhyla mukhlesuri is reported from Myanmar for the first time. We further discuss the morphological diagnostics and biogeography of Microhyla species recorded in Myanmar.
Valentin’s rock lizard (Darevskia valentini) is suggested to be the parent for several parthenogenetic species (e.g., D. armeniaca, D. bendimahiensis, D. sapphirina, and D. unisexualis) that evolved through hybridization. Complex evolutionary processes (including reticulate evolution) are occurring within the areas where Valentin’s rock lizard coexists with these and other rock lizards. Hence, a detailed biological specification of this species is important for understanding how vertebrates evolve. Valentin’s rock lizard is a long-lived (up to 9 years), small diurnal lizard with larger females than males, which is unlike other species of the genus. Their relatively large eggs and early reproduction period, which occurs just after emergence from winter shelters, are adaptations for living in a high elevation climate (higher than 2 000 m a.s.l.). Their body temperatures (31–32 °С) are comparable to body temperatures of rock lizards living in milder climates, though female body temperature is more dependent on substrate temperature and basking due to their lower activity than that found in males. Population density fluctuates from several individuals to several hundred per hectare and is not affected by parthenogen coexistence, although hybrids do occur in sexually biased populations where males are more common than females. The male home range is larger than that of females, though these home ranges broadly overlap. Prey is not limited in the mountain meadows and Valentin’s rock lizards feed on a great variety of arthropods. Infanticide occurs in high-density populations.
Divergence of gene expression and alternative splicing is a crucial driving force in the evolution of species; to date, however the molecular mechanism remains unclear. Hybrids of closely related species provide a suitable model to analyze allele-specific expression (ASE) and allele-specific alternative splicing (ASS). Analysis of ASE and ASS can uncover the differences in cis-regulatory elements between closely related species, while eliminating interference of trans-regulatory elements. Here, we provide a detailed characterization of ASE and ASS from 19 and 10 transcriptome datasets across five tissues from reciprocal-cross hybrids of horse×donkey (mule/hinny) and cattle×yak (dzo), respectively. Results showed that 4.8%–8.7% and 10.8%–16.7% of genes exhibited ASE and ASS, respectively. Notably, lncRNAs and pseudogenes were more likely to show ASE than protein-coding genes. In addition, genes showing ASE and ASS in mule/hinny were found to be involved in the regulation of muscle strength, whereas those of dzo were involved in high-altitude adaptation. In conclusion, our study demonstrated that exploration of genes showing ASE and ASS in hybrids of closely related species is feasible for species evolution research.
Ambient temperature is an important factor influencing many physiological processes, including antioxidant defense and immunity. In the present study, we tested the hypothesis that antioxidant defense and immunity are suppressed by high and low temperature treatment in Brandt’s voles (Lasiopodomys brandtii). Thirty male voles were randomly assigned into different temperature groups (4, 23, and 32 °C, n=10 for each group), with the treatment course lasting for 27 d. Results showed that low temperature increased gross energy intake (GEI) and liver, heart, and kidney mass, but decreased body fat mass and dry carcass mass. With the decline in temperature, hydrogen peroxide (H2O2) concentration, which is indicative of reactive oxygen species (ROS) levels, increased in the liver, decreased in the heart, and was unchanged in the kidney, testis, and small intestine. Lipid peroxidation indicated by malonaldehyde (MDA) content in the liver, heart, kidney, testis, and small intestine did not differ among groups, implying that high and low temperature did not cause oxidative damage. Similarly, superoxide dismutase (SOD) and catalase (CAT) activities and total antioxidant capacity (T-AOC) in the five tissues did not respond to low or high temperature, except for elevation of CAT activity in the testis upon cold exposure. Bacteria killing capacity, which is indicative of innate immunity, was nearly suppressed in the 4 °C group in contrast to the 23 °C group, whereas spleen mass and white blood cells were unaffected by temperature treatment. The levels of testosterone, but not corticosterone, were influenced by temperature treatment, though neither were correlated with innate immunity, H2O2 and MDA levels, or SOD, CAT, and T-AOC activity in any detected tissues. Overall, these results showed that temperature had different influences on oxidative stress, antioxidant enzymes, and immunity, which depended on the tissues and parameters tested. Up-regulation or maintenance of antioxidant defense might be an important mechanism for voles to survive highly variable environmental temperatures.
Leukocyte cell-derived chemotaxin 2 (LECT2), a multifunctional hepatokine, is involved in many pathological conditions. However, its role in atherosclerosis remains undefined. In this study, we administered vehicle or LECT2 to male Apoe-/- mice fed a Western diet for 15 weeks. Atherosclerotic lesions were visualized and quantified with Oil-red O and hematoxylin staining. The mRNA expression levels of MCP-1, MMP-1, IL-8, IL-1β, and TNF-α were analyzed by quantitative real-time polymerase chain reaction. Serum TNF-α, IL-1β, IL-8, MCP-1, and MMP-1 concentrations were measured by enzyme-linked immunosorbent assay. CD68, CD31, and α-SMA, markers of macrophages, endothelial cells, and smooth muscle cells, respectively, were detected by immunostaining. Results showed that LECT2 reduced total cholesterol and low-density lipoprotein concentrations in serum and inhibited the development of atherosclerotic lesions, accompanied by reductions in inflammatory cytokines and lower MCP-1, MMP-1, TNF-α, IL-8, and IL-1β mRNA abundance. Furthermore, LECT2 decreased CD68, but increased α-SMA in atherosclerotic lesions, suggesting an increase in smooth muscle cells and reduction in macrophages. In summary, LECT2 inhibited the development of atherosclerosis in mice, accompanied by reduced serum total cholesterol concentration and lower inflammatory responses.
Letters to the editor
In this study, a total of 106 individuals of Oreocryptophis porphyraceus from mainland China were morphologically examined and recorded. Differences between populations were compared by combining data from this study and other published research. The skulls of three specimens representing three proposed subspecies (i.e., O. p. pulchra, O. p. vaillanti, and O. p. hainana) were examined by computed tomography (CT) scanning. Both external morphological characters and skull comparisons consistently showed significant differences between the studied populations. Based on these data, we suggest that at least four subspecies of O. porphyraceus should be recognized in mainland China: i.e., O. p. porphyraceus, O. p. pulchra, O. p. vaillanti, and O. p. hainana. However, the taxonomical arrangement of the central Chinese populations with intermediate morphology remain unresolved.
A new blind loach species, Triplophysa erythraea sp. nov., from a karst cave in Hunan Province, central south China, is described based on morphology and cyt b gene sequencing. It can be distinguished from other species of Triplophysa by the following combination of characters: eyes absent; body scaleless and colorless; caudal-fin 17; maxillary barbel longest; fins transparent, compressed pectoral-fin reaching 2/3 distance between pectoral-fin and pelvic-fin origins; pelvic-fin and dorsal-fin origins relative; posterior chamber of airbladder well developed, long, oval, and dissociative.
Hemorrhagic septicemia is an acute, highly fatal disease that affects goldfish (Carassius auratus). To gain a better understanding of related immune genes, the transcriptomes of the skin and head kidney of goldfish suffering hemorrhagic septicemia were sequenced, assembled, and characterized. Based on functional annotation, an extensive and diverse catalog of expressed genes were identified in both the skin and head kidney. As two different organs, pair-wise comparison identified 122/77 unigenes up/down-regulated (two-fold change with P<0.05) in the skin and head kidney. Most genes of the immune pathways were expressed and isolated in both skin and head kidney, including interferon (IFN) transcription factors 1–10 and Toll-like receptors (TLRs). Interferon regulatory factor 3 (IRF3), a key IFN transcription factor, was up-regulated at the transcriptional level by polyriboinosinic: polyribocytidylic acid (poly I:C) challenge and regulated the IFN response by increasing the activity of IFN-β and IFN-stimulated response element (ISRE)-containing promoter. This study will benefit the identification and understanding of novel genes that play important roles in the immunological reactions of fish suffering from hemorrhagic septicemia.