2014 Vol. 35, No. 5

Display Method:
A new species of river loach, Schistura megalodon sp. nov., is described from the Irrawaddy basin in Yingjiang County, Dehong Autonomous Prefecture, Yunnan Province, China. The following combination of diagnostic characters serve to distinguish it from all other congeners in the given zoogeographical region: a large processus dentiformes in the upper jaw, a short pre-anus length of 65.4%-66.3% of SL, long paired fins (pectoral: 20.8%-24.2% of SL; pelvic: 17.9%-20.6% of SL), a wide body of 9.7%-11.3% of SL at anal fin origin, an incomplete lateral line, the absence of an orbital lobe, and a broad and distinct basicaudal bar with forward extensions.
Using seasonally collected data (2009-2010) from 15 sampling sites that represent first- to fifth-order streams within the Qingyi watershed, we examined the spatio-temporal patterns of fish assemblages along two longitudinal gradients to explore the effects of a large dam on fish assemblages at the watershed scale. No significant variation was observed in either species richness or assemblage structure across seasons. Species richness significantly varied according to stream order and gradient. Dam construction appeared to decrease species richness upstream substantially, while a significant decrease between gradients only occurred within fourth-order streams. Along the gradient without the large dam, fish assemblage structures presented distinct separation between two neighboring stream orders, with the exception of fourth-order versus fifth-order streams. However, the gradient disrupted by a large dam displayed the opposite pattern in the spatial variation of fish assemblages related with stream orders. Significant between-gradient differences in fish assemblage structures were only observed within fourth-order streams. Species distributions were determined by local habitat environmental factors, including elevation, substrate, water depth, current discharge, wetted width, and conductivity. Our results suggested that dam construction might alter the longitudinal pattern in fish species richness and assemblage structure in Qingyi Stream, despite the localized nature of the ecological effect of dams.
Both the Siberian Crane (Leucogeranus leucogeranus) and Hooded Crane (Grus monacha) have limited population sizes and are considered endangered by domestic Chinese and international agencies. To document the current size of their respective populations and characterize their groups, between October 2012 and April 2013 we undertook fieldwork at four nature reserve areas within the Poyang Lake wetlands. We divided Poyanghu National Nature Reserve (PYH) into the Wucheng (PWC) and Hengfeng areas (PHF), because each are each located in different counties. Our fieldwork showed that the Siberian Crane occurred mainly in PYH (364 in the PHF, 158 in the PWC) and the Nanjishan Wetland National Nature Reserve (NJS, with 200 individuals). The Hooded Crane was mainly distributed in PYH (302 in the PHF and 154 in the PWC). Family groups accounted for more than 50% of the total number of groups among both species, with Hooded Cranes forming more family groups than Siberian Cranes. Typically, these groups were formed of two adults with one offspring (Siberian Crane), and two adults with two offspring (Hooded Crane), with the mean family group size of the Siberian Crane and Hooded Crane being respectively 2.65±0.53 (n=43) and 3.09±0.86 (n=47) individuals per group. The mean collective group size of the Siberian Crane and Hooded Crane included 28.09±24.94 (n=23) and 28.94±27.97 (n=16) individuals per group, respectively, with the proportion of juveniles among Hooded Cranes being more than double that seen among the Siberian Cranes.
The Asian swamp eel (Monopterus albus) is one of the most economically important freshwater fish in East Asia, but data on the immune genes of M. albus are scarce compared to other commercially important fish. A better understanding of the eel's immune responses may help in developing strategies for disease management, potentially improving yields and mitigating losses. In mammals, interferon regulatory factors (IRFs) play a vital role in both the innate and adaptive immune system; though among teleosts IRF4 and IRF10 have seldom been studied. In this study, we characterized IRF4 and IRF10 from M. albus (maIRF4 and maIRF10) and found that maIRF4 cDNA consists of 1 716 nucleotides encoding a 451 amino acid (aa) protein, while maIRF10 consists of 1 744 nucleotides including an open reading frame (ORF) of 1 236 nt encoding 411 aa. The maIRF10 gene was constitutively expressed at high levels in a variety of tissues, while maIRF4 showed a very limited expression pattern. Expression of maIRF4 and maIRF10 in head kidney, and spleen tissues was significantly up-regulated from 12 h to 48 h post-stimulation with polyinosinic: polycytidylic acid (poly I:C), lipopolysaccharide (LPS) and a common pathogenic bacteria Aeromonas hydrophila. These results suggest that IRF4 and IRF10 play roles in immune responses to both viral and bacterial infections in M. albus.
The B cells translocation gene 1 (BTG1) is a member of the BTG/TOB family of anti-proliferative genes, which have recently emerged as important regulators of cell growth and differentiation among vertebrates. Here, for the first time we cloned the full-length cDNA sequence of Hyriopsis schlegelii (Hs-BTG1), an economically important freshwater shellfish and potential indicator of environmental heavy metal pollution, for the first time. Using rapid amplification of cDNA ends (RACE) together with splicing the EST sequence from a haemocyte cDNA library, we found that Hs-BTG1 contains a 525 bp open reading frame (ORF) encoding a 174 amino-acid polypeptide, a 306 bp 5' untranslated region (5' UTR), and a 571 bp 3' UTR with a Poly(A) tail as well as a transcription termination signal (AATAAA). Homologue searching against GenBank revealed that Hs-BTG1 was closest to Crassostrea gigas BTG1, sharing 50.57% of protein identities. Hs-BTG1 also shares some typical features of the BTG/TOB family, possessing two well-conserved A and B boxes. Clustering analysis of Hs-BTG1 and other known BTGs showed that Hs-BTG1 was also closely related to BTG1 of C. gigas from the invertebrate BTG1 clade. Function prediction via homology modeling showed that both Hs-BTG1 and C. gigas BTG1 share a similar three-dimensional structure with Homo sapiens BTG1. Tissue-specific expression analysis of the Hs-BTG1 via real-time PCR showed that the transcripts were constitutively expressed, with the highest levels in the hepatopancreas and gills, and the lowest in both haemocyte and muscle tissue. Expression levels of Hs-BTG1 in hepatopancreas (2.03-fold), mantle (2.07-fold), kidney (2.2-fold) and haemocyte (2.5-fold) were enhanced by cadmium (Cd2+) stress, suggesting that Hs-BTG1 may have played a significant role in H. schlegelii adaptation to adverse environmental conditions.
In this study, to clarify the bioactive polypeptides included in the skins and secretions of Bufo, we screened the Japanese toad (Bufo japonicus formosus) skin cDNA library by colony polymerase chain reaction (PCR), and obtained a transcript of 1 075 bp consisting of 1 37 bp 5' untranslated region (UTR), 515 bp 3' UTR and a 423 bp open reading frame (ORF) encoding a polypeptide of 140 amino acid residues (GenBank accession number: KF359945). Homolog analysis showed a 70%-96% homology with sterol carrier protein-2 (SCP-2) present in other animals, which is implicated in lipid metabolism of other organisms. The gene SCP-2 of Chinese toad (B. gargarizans) was cloned from a first strand cDNA of Bufo skin (GenBank accession number: KF381341) via PCR, whose encoding polypeptide has only one amino acid difference from that of Japanese toad. Tissue distribution analysis showed that SCP-2 expressed in all organs tested, though in the liver and spleen it manifested lower expression than in other organs. These findings might indicate SCP-2 being one of the active ingredients in toad skin. These findings may in turn have implications for further drug development from traditional Chinese medicine sources.
The grass carp (Ctenopharyngodon idella) is one of the most important cultivated fish species in China. Mounting evidences suggests that microRNAs (miRNAs) may be key regulators of skeletal muscle among the grass carp, but the knowledge of the identity of myogenic miRNAs and role of miRNAs during skeletal muscle anabolic state remains limited. In the present study, we choose 8 miRNAs previously reported to act as muscle growth-related miRNAs for fasting-refeeding research. We investigated postprandial changes in the expression of 8 miRNAs following a single satiating meal in grass carp juveniles who had been fasting for one week and found that 7 miRNAs were sharply up-regulated within 1 or 3 h after refeeding, suggesting that they may be promising candidate miRNAs involved in a fast-response signaling system that regulates fish skeletal muscle growth.
The influence of intracortical inhibition on the response adaptation of visual cortical neurons remains in debate. To clarify this issue, in the present study the influence of surround suppression evoked through the local inhibitory interneurons on the adaptation effects of neurons in the primary visual cortex (V1) were observed. Moreover, the adaptations of V1 neurons to both the high-contrast visual stimuli presented in the classical receptive field (CRF) and to the costimulation presented in the CRF and the surrounding nonclassical receptive field (nCRF) were compared. The intensities of surround suppression were modulated with different sized grating stimuli. The results showed that the response adaptation of V1 neurons decreased significantly with the increase of surround suppression and this adaptation decrease was due to the reduction of the initial response of V1 neurons to visual stimuli. However, the plateau response during adaptation showed no significant changes. These findings indicate that the adaptation effects of V1 neurons may not be directly affected by surround suppression, but may be dynamically regulated by a negative feedback network and be finely adjusted by its initial spiking response to stimulus. This adaptive regulation is not only energy efficient for the central nervous system, but also beneficially acts to maintain the homeostasis of neuronal response to long-presenting visual signals.
Here, we used reverse transcription-PCR (RT-PCR) and western blot to detect protease-activated receptor (PAR) 1, PAR 2 and PAR 4 expression in cancer tissues and cell lines of esophageal squamous cell carcinoma, and investigated the co-relationship between PAR expression and clinic-pathological data for esophageal cancer. The methylation of PAR4 gene promoter involved in esophageal carcinoma was also analyzed. By comparing the mRNA expressions of normal esophageal tissue and human esophageal epithelial cells (HEEpiC), we found that among the 28 cases of esophageal squamous cell carcinoma, PAR1 (60%) and PAR2 (71%) were elevated in 17 and 20 cases, respectively, and PAR4 (68%) expression was lowered in 19 cases. Whereas, in human esophageal squamous cells (TE-1 and TE-10), PAR1 and PAR2 expression was increased but PAR4 was decreased. Combined with clinical data, the expression of PAR1 in poorly differentiated (P=0.016) and middle and lower parts of the esophagus (P=0.016) was higher; expression of PAR4 in poorly differentiated carcinoma was lower (P=0.049). Regarding TE-1 and TE-10 protein expression, we found that in randomized esophageal carcinoma, PAR1 (P=0.027) and PAR2 (P=0.039) expressions were increased, but lowered for PAR4 (P=0.0001). In HEEpiC, TE-1, TE-10, esophageal and normal esophagus tissue samples (case No. 7), the frequency of methylation at the 19 CpG loci of PAR4 was 35.4%, 95.2%, 83.8%, 62.6% and 48.2%, respectively. Our results indicate that the expression of PAR1 and PAR2 in esophageal squamous cell carcinoma is increased but PAR4 is decreased. Hypermethylation of the promoter of the PAR4 gene may contribute to reduced expression of PAR4 in esophageal squamous cell carcinoma.
C57BL/6J and BALB/cJ mice display significant differences in sociability and response to drugs, but the phenotypic variability of their susceptibility to cocaine is still not well known. In this study, the differences between these two mice strains in the persistence of cocaine-induced conditioned place preference (CPP), as well as the locomotion and social behaviors after the 24-hour withdrawal from a four-day cocaine (20 mg/kg/day) administration were investigated. The results showed that the cocaine-induced CPP persisted over two weeks in C57BL/6J mice, while it diminished within one week among BALB/cJ mice. After 24-hours of cocaine withdrawal, high levels of locomotion as well as low levels of social interaction and aggressive behavior were found in C57BL/6J mice, but no significant changes were found in BALB/cJ mice, indicating that cocaine-induced CPP persistence, locomotion and social behavior are not consistent between these two strains, and that overall C57BL/6J mice are more susceptible to cocaine than BALB/cJ mice at the tested doses.
Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, are a group of fatal neurodegenerative diseases detected in a wide range of mammalian species. The "protein-only" hypothesis of TSE suggests that prions are transmissible particles devoid of nucleic acid and the primary pathogenic event is thought to be the conversion of cellular prion protein (PrPC) into the disease-associated isoform (PrPSc). According to susceptibility to TSEs, animals can be classified into susceptible species and low susceptibility species. In this review we focus on several species with low susceptibility to TSEs: dogs, rabbits, horses and buffaloes. We summarize recent studies into the characteristics of low susceptibility regarding protein structure, and biochemical and genetic properties.