Turn off MathJax
Article Contents
Yang Han, Jiale Zhou, Renquan Zhang, Yuru Liang, Liangxue Lai, Zhanjun Li. Genome-edited rabbits: Unleashing the potential of a promising experimental animal model across diverse diseases. Zoological Research, 2024, 45(2): 253-262. doi: 10.24272/j.issn.2095-8137.2023.201
Citation: Yang Han, Jiale Zhou, Renquan Zhang, Yuru Liang, Liangxue Lai, Zhanjun Li. Genome-edited rabbits: Unleashing the potential of a promising experimental animal model across diverse diseases. Zoological Research, 2024, 45(2): 253-262. doi: 10.24272/j.issn.2095-8137.2023.201

Genome-edited rabbits: Unleashing the potential of a promising experimental animal model across diverse diseases

doi: 10.24272/j.issn.2095-8137.2023.201
The authors declare that they have no competing interests.
Y.H., Z.L., and L.L. wrote the manuscript. J.Z., R.Z., and Y.L. collected the references and prepared the figures. All authors contributed to the article and read and approved the final version of the manuscript.
Funds:  This work was supported by the National Natural Science Foundation of China (31970574)
More Information
  • Animal models are extensively used in all aspects of biomedical research, with substantial contributions to our understanding of diseases, the development of pharmaceuticals, and the exploration of gene functions. The field of genome modification in rabbits has progressed slowly. However, recent advancements, particularly in CRISPR/Cas9-related technologies, have catalyzed the successful development of various genome-edited rabbit models to mimic diverse diseases, including cardiovascular disorders, immunodeficiencies, aging-related ailments, neurological diseases, and ophthalmic pathologies. These models hold great promise in advancing biomedical research due to their closer physiological and biochemical resemblance to humans compared to mice. This review aims to summarize the novel gene-editing approaches currently available for rabbits and present the applications and prospects of such models in biomedicine, underscoring their impact and future potential in translational medicine.
  • The authors declare that they have no competing interests.
    Y.H., Z.L., and L.L. wrote the manuscript. J.Z., R.Z., and Y.L. collected the references and prepared the figures. All authors contributed to the article and read and approved the final version of the manuscript.
  • loading
  • [1]
    Abbasi J. 2017. DNA base editing could reverse most disease-causing point mutations. JAMA, 318(22): 2173.
    [2]
    Anzalone AV, Koblan LW, Liu DR. 2020. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nature Biotechnology, 38(7): 824−844. doi: 10.1038/s41587-020-0561-9
    [3]
    Bora J, Dey A, Lyngdoh AR, et al. 2023. A critical review on therapeutic approaches of CRISPR-Cas9 in diabetes mellitus. Naunyn-Schmiedeberg’s Archives of Pharmacology, 396(12): 3459−3481. doi: 10.1007/s00210-023-02631-1
    [4]
    Bősze Z, Major P, Baczkó I, et al. 2016. The potential impact of new generation transgenic methods on creating rabbit models of cardiac diseases. Progress in Biophysics and Molecular Biology, 121(2): 123−130. doi: 10.1016/j.pbiomolbio.2016.05.007
    [5]
    Cavalli G, Heard E. 2019. Advances in epigenetics link genetics to the environment and disease. Nature, 571(7766): 489−499. doi: 10.1038/s41586-019-1411-0
    [6]
    Chen JH, Zhang HY, Li LQ, et al. 2023. Lp-PLA2 (Lipoprotein-Associated Phospholipase A2) deficiency lowers cholesterol levels and protects against atherosclerosis in rabbits. Arteriosclerosis, Thrombosis, and Vascular Biology, 43(1): e11−e28.
    [7]
    Chen SY, Jia YQ, Liu ZQ, et al. 2020. Robustly improved base editing efficiency of Cpf1 base editor using optimized cytidine deaminases. Cell Discovery, 6(1): 62. doi: 10.1038/s41421-020-00195-5
    [8]
    Chen XJ, Sun XL, Yang W, et al. 2018. An autoimmune disease variant of IgG1 modulates B cell activation and differentiation. Science, 362(6415): 700−705. doi: 10.1126/science.aap9310
    [9]
    Cheong TC, Compagno M, Chiarle R. 2016. Editing of mouse and human immunoglobulin genes by CRISPR-Cas9 system. Nature Communications, 7: 10934. doi: 10.1038/ncomms10934
    [10]
    Cho SI, Lee S, Mok YG, et al. 2022. Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases. Cell, 185(10): 1764−1776.e12. doi: 10.1016/j.cell.2022.03.039
    [11]
    Cong L, Ran FA, Cox D, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121): 819−823. doi: 10.1126/science.1231143
    [12]
    De Almeida Da Anunciação AR, Favaron PO, De Morais‐Pinto L, et al. 2021. Central nervous system development in rabbits (Oryctolagus cuniculus L. 1758). The Anatomical Record, 304(6): 1313−1328. doi: 10.1002/ar.24586
    [13]
    Doman JL, Raguram A, Newby GA, et al. 2020. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nature Biotechnology, 38(5): 620−628. doi: 10.1038/s41587-020-0414-6
    [14]
    Doudna JA, Charpentier E. 2014. The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213): 1258096. doi: 10.1126/science.1258096
    [15]
    Dunn CS, Mehtali M, Houdebine LM, et al. 1995. Human immunodeficiency virus type 1 infection of human CD4-transgenic rabbits. Journal of General Virology, 76(6): 1327−1336. doi: 10.1099/0022-1317-76-6-1327
    [16]
    Dutta S, Sengupta P. 2016. Men and mice: Relating their ages. Life Sciences, 152: 244−248. doi: 10.1016/j.lfs.2015.10.025
    [17]
    Esteves PJ, Abrantes J, Baldauf HM, et al. 2018. The wide utility of rabbits as models of human diseases. Experimental & Molecular Medicine, 50(5): 1−10.
    [18]
    Fan JL, Chen YJ, Yan HZ, et al. 2018. Principles and applications of rabbit models for atherosclerosis research. Journal of Atherosclerosis and Thrombosis, 25(3): 213−220. doi: 10.5551/jat.RV17018
    [19]
    Fan JL, Wang YL, Chen YE. 2021. Genetically modified rabbits for cardiovascular research. Frontiers in Genetics, 12: 614379. doi: 10.3389/fgene.2021.614379
    [20]
    Fan Y, Pedersen O. 2020. Gut microbiota in human metabolic health and disease. Nature Reviews Microbiology, 19(1): 55−71.
    [21]
    Flisikowska T, Thorey IS, Offner S, et al. 2011. Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases. PLoS One, 6(6): e21045. doi: 10.1371/journal.pone.0021045
    [22]
    Ganor Y, Goldberg-Stern H, Cohen R, et al. 2014. Glutamate receptor antibodies directed against AMPA receptors subunit 3 peptide B (GluR3B) can be produced in DBA/2J mice, lower seizure threshold and induce abnormal behavior. Psychoneuroendocrinology, 42: 106−117. doi: 10.1016/j.psyneuen.2014.01.005
    [23]
    Gossler A, Doetschman T, Korn R, et al. 1986. Transgenesis by means of blastocyst-derived embryonic stem cell lines. Proceedings of the National Academy of Sciences of the United States of America, 83(23): 9065−9069.
    [24]
    Hammer RE, Pursel VG, Rexroad CE, et al. 1985. Production of transgenic rabbits, sheep and pigs by microinjection. Nature, 315(6021): 680−683. doi: 10.1038/315680a0
    [25]
    Hashikawa Y, Hayashi R, Tajima M, et al. 2020. Generation of knockout rabbits with X-linked severe combined immunodeficiency (X-SCID) using CRISPR/Cas9. Scientific Reports, 10(1): 9957. doi: 10.1038/s41598-020-66780-6
    [26]
    Hirabayashi M, Kato M, Kaneko R, et al. 2006. No effect of recombinase-mediated DNA transfer on production efficiency of transgenic rats. Experimental Animals, 55(2): 131−135. doi: 10.1538/expanim.55.131
    [27]
    Hiripi L, Negre D, Cosset FL, et al. 2010. Transgenic rabbit production with simian immunodeficiency virus-derived lentiviral vector. Transgenic Research, 19(5): 799−808. doi: 10.1007/s11248-009-9356-y
    [28]
    Hoang V, Withers-Ward E, Camerini D. 2008. Nonprimate models of HIV-1 infection and pathogenesis. Advances in Pharmacology, 56: 399−422.
    [29]
    Honda A, Ogura A. 2017. Rabbit models for biomedical research revisited via genome editing approaches. Journal of Reproduction and Development, 63(5): 435−438. doi: 10.1262/jrd.2017-053
    [30]
    Hornyik T, Rieder M, Castiglione A, et al. 2022. Transgenic rabbit models for cardiac disease research. British Journal of Pharmacology, 179(5): 938−957. doi: 10.1111/bph.15484
    [31]
    Hou Y, Zhang X, Sun X, et al. 2022. Genetically modified rabbit models for cardiovascular medicine. European Journal of Pharmacology, 922: 174890. doi: 10.1016/j.ejphar.2022.174890
    [32]
    Hu JF, Peng XW, Schell TD, et al. 2006. An HLA-A2.1-transgenic rabbit model to study immunity to papillomavirus infection. The Journal of Immunology, 177(11): 8037−8045. doi: 10.4049/jimmunol.177.11.8037
    [33]
    Hu JF, Schell TD, Peng XW, et al. 2010. Using HLA-A2.1 transgenic rabbit model to screen and characterize new HLA-A2.1 restricted epitope DNA vaccines. Journal of Vaccines and Vaccination, 1(1): 1000101.
    [34]
    Ivics Z, Hiripi L, Hoffmann OI, et al. 2014. Germline transgenesis in rabbits by pronuclear microinjection of Sleeping beauty transposons. Nature Protocols, 9(4): 794−809. doi: 10.1038/nprot.2014.009
    [35]
    Jing D, Yan ZD, Cai J, et al. 2018. Low-1 level mechanical vibration improves bone microstructure, tissue mechanical properties and porous titanium implant osseointegration by promoting anabolic response in type 1 diabetic rabbits. Bone, 106: 11−21. doi: 10.1016/j.bone.2017.10.001
    [36]
    Joung JK, Sander JD. 2013. TALENs: a widely applicable technology for targeted genome editing. Nature Reviews Molecular Cell Biology, 14(1): 49−55. doi: 10.1038/nrm3486
    [37]
    Kim H, Kim JS. 2014. A guide to genome engineering with programmable nucleases. Nature Reviews Genetics, 15(5): 321−334. doi: 10.1038/nrg3686
    [38]
    Lampe GD, King RT, Halpin-Healy TS, et al. 2023. Targeted DNA integration in human cells without double-strand breaks using CRISPR-associated transposases. Nature Biotechnology, doi: https://doi.org/10.1038/s41587-023-01748-1.
    [39]
    Li GL, Li XY, Zhuang SK, et al. 2022. Gene editing and its applications in biomedicine. Science China Life Sciences, 65(4): 660−700. doi: 10.1007/s11427-021-2057-0
    [40]
    Li SG, Chen XJ, Fang ZF, et al. 2006. Rabbits generated from fibroblasts through nuclear transfer. Reproduction, 131(6): 1085−1090. doi: 10.1530/rep.1.01065
    [41]
    Liu TJ, Wang J, Xie XD, et al. 2019a. DMP1 ablation in the rabbit results in mineralization defects and abnormalities in haversian canal/osteon microarchitecture. Journal of Bone and Mineral Research, 34(6): 1115−1128. doi: 10.1002/jbmr.3683
    [42]
    Liu X, Yang J, Li ZY, et al. 2023. YIPF5 (p. W218R) mutation induced primary microcephaly in rabbits. Neurobiology of Disease, 182: 106135. doi: 10.1016/j.nbd.2023.106135
    [43]
    Liu ZQ, Chen M, Chen SY, et al. 2018. Highly efficient RNA-guided base editing in rabbit. Nature Communications, 9(1): 2717. doi: 10.1038/s41467-018-05232-2
    [44]
    Liu ZQ, Chen SY, Lai LX, et al. 2022. Inhibition of base editors with anti-deaminases derived from viruses. Nature Communications, 13(1): 597. doi: 10.1038/s41467-022-28300-0
    [45]
    Liu ZQ, Chen SY, Shan HH, et al. 2020a. Efficient base editing with high precision in rabbits using YFE-BE4max. Cell Death & Disease, 11(1): 36.
    [46]
    Liu ZQ, Chen SY, Shan HH, et al. 2020b. Precise base editing with CC context-specificity using engineered human APOBEC3G-nCas9 fusions. BMC Biology, 18(1): 111. doi: 10.1186/s12915-020-00849-6
    [47]
    Liu ZQ, Shan HH, Chen SY, et al. 2019b. Efficient base editing with expanded targeting scope using an engineered Spy-mac Cas9 variant. Cell Discovery, 5: 58.
    [48]
    Liu ZQ, Shan HH, Chen SY, et al. 2020c. Highly efficient base editing with expanded targeting scope using SpCas9-NG in rabbits. The FASEB Journal, 34(1): 588−596. doi: 10.1096/fj.201901587R
    [49]
    Lv QY, Yuan L, Deng JC, et al. 2016. Efficient generation of Myostatin gene mutated rabbit by CRISPR/Cas9. Scientific Reports, 6: 25029. doi: 10.1038/srep25029
    [50]
    Ma X, Wong ASY, Tam HY, et al. 2018. In vivo genome editing thrives with diversified CRISPR technologies. Zoological Research, 39(2): 58−71. doi: 10.24272/j.issn.2095-8137.2017.012
    [51]
    Maruyama T, Dougan SK, Truttmann MC, et al. 2015. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nature Biotechnology, 33(5): 538−542. doi: 10.1038/nbt.3190
    [52]
    Matsuhisa F, Kitajima S, Nishijima K, et al. 2020. Transgenic rabbit models: now and the future. Applied Sciences, 10(21): 7416. doi: 10.3390/app10217416
    [53]
    Mok BY, Kotrys AV, Raguram A, et al. 2022. CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA. Nature Biotechnology, 40(9): 1378−1387. doi: 10.1038/s41587-022-01256-8
    [54]
    Mukherjee P, Roy S, Ghosh D, et al. 2022. Role of animal models in biomedical research: a review. Laboratory Animal Research, 38(1): 18. doi: 10.1186/s42826-022-00128-1
    [55]
    Neves F, Abrantes J, Almeida T, et al. 2015. Genetic characterization of interleukins (IL-1α, IL-1β, IL-2, IL-4, IL-8, IL-10, IL-12A, IL-12B, IL-15 and IL-18) with relevant biological roles in lagomorphs. Innate Immunity, 21(8): 787−801. doi: 10.1177/1753425915606209
    [56]
    Nguyen VP, Song J, Prieskorn D, et al. 2023. USH2A gene mutations in rabbits lead to progressive retinal degeneration and hearing loss. Translational Vision Science & Technology, 12(2): 26.
    [57]
    Nissanka N, Moraes CT. 2020. Mitochondrial DNA heteroplasmy in disease and targeted nuclease-based therapeutic approaches. EMBO Reports, 21(3): e49612. doi: 10.15252/embr.201949612
    [58]
    Peng XW, Griffith JW, Lang CM. 2001. Reinitiated expression of EJras transgene in targeted epidermal cells of transgenic rabbits by cottontail rabbit papillomavirus infection. Cancer Letters, 171(2): 193−200. doi: 10.1016/S0304-3835(01)00576-6
    [59]
    Pinheiro A, Neves F, De Matos AL, et al. 2016. An overview of the lagomorph immune system and its genetic diversity. Immunogenetics, 68(2): 83−107. doi: 10.1007/s00251-015-0868-8
    [60]
    Qian YQ, Wang D, Niu WC, et al. 2023. A new compact adenine base editor generated through deletion of HNH and REC2 domain of SpCas9. BMC Biology, 21(1): 155. doi: 10.1186/s12915-023-01644-9
    [61]
    Qian YQ, Zhao D, Sui TT, et al. 2021. Efficient and precise generation of Tay-Sachs disease model in rabbit by prime editing system. Cell Discovery, 7(1): 50. doi: 10.1038/s41421-021-00276-z
    [62]
    Rahman A, Li Y, Chan TK, et al. 2023. Large animal models of cardiac ischemia-reperfusion injury: where are we now?. Zoological Research, 44(3): 591−603. doi: 10.24272/j.issn.2095-8137.2022.487
    [63]
    Rees HA, Liu DR. 2018. Base editing: precision chemistry on the genome and transcriptome of living cells. Nature Reviews Genetics, 19(12): 770−788. doi: 10.1038/s41576-018-0059-1
    [64]
    Renaud JB, Boix C, Charpentier M, et al. 2016. Improved genome editing efficiency and flexibility using modified oligonucleotides with TALEN and CRISPR-Cas9 nucleases. Cell Reports, 14(9): 2263−2272. doi: 10.1016/j.celrep.2016.02.018
    [65]
    Saito M, Xu PY, Faure G, et al. 2023. Fanzor is a eukaryotic programmable RNA-guided endonuclease. Nature, 620(7974): 660−668. doi: 10.1038/s41586-023-06356-2
    [66]
    Savić N, Schwank G. 2016. Advances in therapeutic CRISPR/Cas9 genome editing. Translational Research, 168: 15−21. doi: 10.1016/j.trsl.2015.09.008
    [67]
    Shao M, Xu TR, Chen CS. 2016. The big bang of genome editing technology: development and application of the CRISPR/Cas9 system in disease animal models. Zoological Research, 37(4): 191−204.
    [68]
    Soares J, Pinheiro A, Esteves PJ. 2022. The rabbit as an animal model to study innate immunity genes: is it better than mice?. Frontiers in Immunology, 13: 981815. doi: 10.3389/fimmu.2022.981815
    [69]
    Song J, Hoenerhoff M, Yang DS, et al. 2021a. Development of the nude rabbit model. Stem Cell Reports, 16(3): 656−665. doi: 10.1016/j.stemcr.2021.01.010
    [70]
    Song J, Pallas B, Yang DS, et al. 2020a. Immunodeficient rabbit models: history, current status and future perspectives. Applied Sciences, 10(20): 7369. doi: 10.3390/app10207369
    [71]
    Song J, Zhang JF, Xu J, et al. 2021b. Genome engineering technologies in rabbits. The Journal of Biomedical Research, 35(2): 135−147. doi: 10.7555/JBR.34.20190133
    [72]
    Song J, Zhong J, Guo XG, et al. 2013. Generation of RAG 1-and 2-deficient rabbits by embryo microinjection of TALENs. Cell Research, 23(8): 1059−1062. doi: 10.1038/cr.2013.85
    [73]
    Song YN, Liu TJ, Wang Y, et al. 2017. Mutation of the Sp1 binding site in the 5′ flanking region of SRY causes sex reversal in rabbits. Oncotarget, 8(24): 38176−38183. doi: 10.18632/oncotarget.16979
    [74]
    Song YN, Sui TT, Zhang YX, et al. 2020b. Genetic deletion of a short fragment of glucokinase in rabbit by CRISPR/Cas9 leading to hyperglycemia and other typical features seen in MODY-2. Cellular and Molecular Life Sciences, 77(16): 3265−3277. doi: 10.1007/s00018-019-03354-4
    [75]
    Song YN, Xu YY, Liang MM, et al. 2018a. CRISPR/Cas9-mediated mosaic mutation of SRY gene induces hermaphroditism in rabbits. Bioscience Reports, 38(2): BSR20171490. doi: 10.1042/BSR20171490
    [76]
    Song YN, Zhang YX, Chen M, et al. 2018b. Functional validation of the albinism-associated tyrosinase T373K SNP by CRISPR/Cas9-mediated homology-directed repair (HDR) in rabbits. Ebiomedicine, 36: 517−525. doi: 10.1016/j.ebiom.2018.09.041
    [77]
    Sui TT, Lau YS, Liu D, et al. 2018a. A novel rabbit model of Duchenne muscular dystrophy generated by CRISPR/Cas9. Disease Models & Mechanisms, 11(6): dmm032201.
    [78]
    Sui TT, Liu D, Liu TJ, et al. 2019. LMNA-mutated Rabbits: a model of premature aging syndrome with muscular dystrophy and dilated cardiomyopathy. Aging and Disease, 10(1): 102−115. doi: 10.14336/AD.2018.0209
    [79]
    Sui TT, Xu L, Lau YS, et al. 2018b. Development of muscular dystrophy in a CRISPR-engineered mutant rabbit model with frame-disrupting ANO5 mutations. Cell Death & Disease, 9(6): 609.
    [80]
    Sui TT, Yuan L, Liu H, et al. 2016. CRISPR/Cas9-mediated mutation of PHEX in rabbit recapitulates human X-linked hypophosphatemia (XLH). Human Molecular Genetics, 25(13): 2661−2671.
    [81]
    Sun C, Lei Y, Li BS, et al. 2023. Precise integration of large DNA sequences in plant genomes using PrimeRoot editors. Nature Biotechnology, doi: https://doi.org/10.1038/s41587-023-01769-w.
    [82]
    Tervo HM, Keppler OT. 2010. High natural permissivity of primary rabbit cells for HIV-1, with a virion infectivity defect in macrophages as the final replication barrier. Journal of Virology, 84(23): 12300−12314. doi: 10.1128/JVI.01607-10
    [83]
    Wan YJ, Guo RH, Deng MT, et al. 2019. Efficient generation of CLPG1-edited rabbits using the CRISPR/Cas9 system. Reproduction in Domestic Animals, 54(3): 538−544. doi: 10.1111/rda.13394
    [84]
    Wilson C, Chen PJ, Miao Z, et al. 2020. Programmable m6A modification of cellular RNAs with a Cas13-directed methyltransferase. Nature Biotechnology, 38(12): 1431−1440. doi: 10.1038/s41587-020-0572-6
    [85]
    Wu H, Liu QS, Shi H, et al. 2018. Engineering CRISPR/Cpf1 with tRNA promotes genome editing capability in mammalian systems. Cellular and Molecular Life Sciences, 75(19): 3593−3607. doi: 10.1007/s00018-018-2810-3
    [86]
    Xu J, Livraghi-Butrico A, Hou X, et al. 2021a. Phenotypes of CF rabbits generated by CRISPR/Cas9-mediated disruption of the CFTR gene. JCI Insight, 6(1): e139813. doi: 10.1172/jci.insight.139813
    [87]
    Xu J, Zhang JF, Yang DS, et al. 2021b. Gene editing in rabbits: unique opportunities for translational biomedical research. Frontiers in Genetics, 12: 642444. doi: 10.3389/fgene.2021.642444
    [88]
    Yan HZ, Niimi M, Matsuhisa F, et al. 2020. Apolipoprotein CIII deficiency protects against atherosclerosis in Knockout Rabbits. Arteriosclerosis, Thrombosis, and Vascular Biology, 40(9): 2095−2107. doi: 10.1161/ATVBAHA.120.314368
    [89]
    Yan QM, Zhang QJ, Yang HQ, et al. 2014. Generation of multi-gene knockout rabbits using the Cas9/gRNA system. Cell Regeneration, 3(1): 12.
    [90]
    Yang DS, Xu J, Zhu TQ, et al. 2014. Effective gene targeting in rabbits using RNA-guided Cas9 nucleases. Journal of Molecular Cell Biology, 6(1): 97−99. doi: 10.1093/jmcb/mjt047
    [91]
    Yang DS, Zhang JF, Xu J, et al. 2013. Production of apolipoprotein C-III knockout rabbits using zinc finger nucleases. Journal of Visualized Experiments, (81): e50957.
    [92]
    Yang JH, Pospisil R, Ray S, et al. 2009. Investigations of a rabbit (Oryctolagus cuniculus) model of systemic lupus erythematosus (SLE), BAFF and its receptors. PLoS One, 4(12): e8494. doi: 10.1371/journal.pone.0008494
    [93]
    Yang Y, Kang XJ, Hu SQ, et al. 2021. CRISPR/Cas9-mediated β-globin gene knockout in rabbits recapitulates human β-thalassemia. Journal of Biological Chemistry, 296: 100464. doi: 10.1016/j.jbc.2021.100464
    [94]
    Yao B, Liang MM, Liu HM, et al. 2020. The minimal promoter (P1) of Xist is non-essential for X chromosome inactivation. RNA Biology, 17(5): 623−629. doi: 10.1080/15476286.2020.1725725
    [95]
    Yin JH, Lu RS, Xin CC, et al. 2022a. Cas9 exo-endonuclease eliminates chromosomal translocations during genome editing. Nature Communications, 13(1): 1204. doi: 10.1038/s41467-022-28900-w
    [96]
    Yin P, Li SH, Li XJ, et al. 2022b. New pathogenic insights from large animal models of neurodegenerative diseases. Protein & Cell, 13(10): 707−720.
    [97]
    Yuan L, Sui TT, Chen M, et al. 2016. CRISPR/Cas9-mediated GJA8 knockout in rabbits recapitulates human congenital cataracts. Scientific Reports, 6: 22024. doi: 10.1038/srep22024
    [98]
    Yuan L, Yao HB, Xu YX, et al. 2017. CRISPR/Cas9-mediated mutation of αA-crystallin gene induces congenital cataracts in rabbits. Investigative Ophthalmology & Visual Science, 58(6): BIO34−BIO41.
    [99]
    Yuan TT, Zhong Y, Wang YG, et al. 2019. Generation of hyperlipidemic rabbit models using multiple sgRNAs targeted CRISPR/Cas9 gene editing system. Lipids in Health and Disease, 18(1): 69. doi: 10.1186/s12944-019-1013-8
    [100]
    Zernii EY, Baksheeva VE, Iomdina EN, et al. 2016. Rabbit models of ocular diseases: new relevance for classical approaches. CNS & Neurological Disorders-Drug Targets, 15(3): 267−291.
    [101]
    Zhang JF, Niimi M, Yang DS, et al. 2017. Deficiency of cholesteryl ester transfer protein protects against atherosclerosis in rabbits. Arteriosclerosis, Thrombosis, and Vascular Biology, 37(6): 1068−1075. doi: 10.1161/ATVBAHA.117.309114
    [102]
    Zhang YX, Yang J, Yao HB, et al. 2022a. CRISPR/Cas9-mediated deletion of Fam83h induces defective tooth mineralization and hair development in rabbits. Journal of Cellular and Molecular Medicine, 26(22): 5670−5679. doi: 10.1111/jcmm.17597
    [103]
    Zhang ZT, Song YN, Lai LX, et al. 2022b. Genome-edited rabbit, a prospective alternative model for neurological diseases. Ageing and Neurodegenerative Diseases, 2(3): 16. doi: 10.20517/and.2022.15
    [104]
    Zhang ZT, Wu XY, Yang J, et al. 2023. Highly efficient base editing in rabbit by using near-PAMless engineered CRISPR/Cas9 variants. Science China Life Sciences, 66(3): 635−638. doi: 10.1007/s11427-021-2165-1
    [105]
    Zhao FY, Zhang T, Sun XD, et al. 2023. A strategy for Cas13 miniaturization based on the structure and AlphaFold. Nature Communications, 14(1): 5545. doi: 10.1038/s41467-023-41320-8
    [106]
    Zhao JG, Lai LX, Ji WZ, et al. 2019. Genome editing in large animals: current status and future prospects. National Science Review, 6(3): 402−420. doi: 10.1093/nsr/nwz013
    [107]
    Zhou JJ, Yan QM, Tang CC, et al. 2020. Development of a rabbit model of Wiskott‐Aldrich syndrome. The FASEB Journal, 35(2): e21226.
    [108]
    Zhou XQ, Xin JG, Fan NN, et al. 2015. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cellular and Molecular Life Sciences, 72(6): 1175−1184. doi: 10.1007/s00018-014-1744-7
    [109]
    Zhou XT, Xie J, Shen MX, et al. 2008. Biometric measurement of the mouse eye using optical coherence tomography with focal plane advancement. Vision Research, 48(9): 1137−1143. doi: 10.1016/j.visres.2008.01.030
    [110]
    Zuo EW, Sun YD, Wei W, et al. 2019. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science, 364(6437): 289−292. doi: 10.1126/science.aav9973
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(3)

    Article Metrics

    Article views (296) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return