Turn off MathJax
Article Contents
Yu Yan, Dong Ik Park, Anja Horn, Mari Golub, Christoph W. Turck. Delineation of biomarkers and molecular pathways of residual effects of fluoxetine treatment in juvenile rhesus monkeys by proteomic profiling. Zoological Research, 2023, 44(1): 30-42. doi: 10.24272/j.issn.2095-8137.2022.196
Citation: Yu Yan, Dong Ik Park, Anja Horn, Mari Golub, Christoph W. Turck. Delineation of biomarkers and molecular pathways of residual effects of fluoxetine treatment in juvenile rhesus monkeys by proteomic profiling. Zoological Research, 2023, 44(1): 30-42. doi: 10.24272/j.issn.2095-8137.2022.196

Delineation of biomarkers and molecular pathways of residual effects of fluoxetine treatment in juvenile rhesus monkeys by proteomic profiling

doi: 10.24272/j.issn.2095-8137.2022.196
The LC-MS/MS raw data reported in this paper have been deposited in OMIX, China National Center for Bioinformation/Beijing Institute of Genomics, Chinese Academy of Sciences (https://ngdc.cncb.ac.cn/omix, accession no. OMIX001759), Science Data Bank (https://www.scidb.cn/en, DOI: 10.57760/sciencedb.j00139.00037), and Mass Spectrometry Interactive Virtual Environment (MassIVE, https://massive.ucsd.edu, MSV000090283) (Chen et al., 2021; Members and Partners, 2021).
Supplementary data to this article can be found online.
The authors declare that they have no competing interests.
C.W.T. and M.G. conceived and designed the project. Y.Y., A.H., and D.I.P. performed the experiments. Y.Y. and C.W.T. analyzed the data. C.W.T. and M.G. supervised the work. All authors contributed to writing the manuscript. All authors read and approved the final version of the manuscript.
Funds:  This work was supported by the Max Planck Society to C.W.T. and National Institutes of Health USDHHS (R01-HD065826 to M.G., OD011107 to Harris Lewin)Current address: Aarhus University, Department of Biomedicine, 8000 Aarhus, Denmark
More Information
  • Corresponding author: E-mail: turck@psych.mpg.de
  • Received Date: 2022-08-04
  • Accepted Date: 2022-10-18
  • Published Online: 2022-10-20
  • Fluoxetine (Prozac™) is the only antidepressant approved by the US Food and Drug Administration (FDA) for the treatment of major depressive disorder (MDD) in children. Despite its considerable efficacy as a selective serotonin reuptake inhibitor, the possible long-term effects of fluoxetine on brain development in children are poorly understood. In the current study, we aimed to delineate molecular mechanisms and protein biomarkers in the brains of juvenile rhesus macaques (Macaca mulatta) one year after the discontinuation of fluoxetine treatment using proteomic and phosphoproteomic profiling. We identified several differences in protein expression and phosphorylation in the dorsolateral prefrontal cortex (DLPFC) and cingulate cortex (CC) that correlated with impulsivity in animals, suggesting that the GABAergic synapse pathway may be affected by fluoxetine treatment. Biomarkers in combination with the identified pathways contribute to a better understanding of the mechanisms underlying the chronic effects of fluoxetine after discontinuation in children.
  • The LC-MS/MS raw data reported in this paper have been deposited in OMIX, China National Center for Bioinformation/Beijing Institute of Genomics, Chinese Academy of Sciences (https://ngdc.cncb.ac.cn/omix, accession no. OMIX001759), Science Data Bank (https://www.scidb.cn/en, DOI: 10.57760/sciencedb.j00139.00037), and Mass Spectrometry Interactive Virtual Environment (MassIVE, https://massive.ucsd.edu, MSV000090283) (Chen et al., 2021; Members and Partners, 2021).
    Supplementary data to this article can be found online.
    The authors declare that they have no competing interests.
    C.W.T. and M.G. conceived and designed the project. Y.Y., A.H., and D.I.P. performed the experiments. Y.Y. and C.W.T. analyzed the data. C.W.T. and M.G. supervised the work. All authors contributed to writing the manuscript. All authors read and approved the final version of the manuscript.
  • loading
  • [1]
    Ballif BA, Villén J, Beausoleil SA, Schwartz D, Gygi SP. 2004. Phosphoproteomic analysis of the developing mouse brain. Molecular & Cellular Proteomics, 3(11): 1093−1101.
    [2]
    Ben-Ari Y. 2014. The GABA excitatory/inhibitory developmental sequence: a personal journey. Neuroscience, 279: 187−219. doi: 10.1016/j.neuroscience.2014.08.001
    [3]
    Bony G, Szczurkowska J, Tamagno I, Shelly M, Contestabile A, Cancedda L. 2013. Non-hyperpolarizing GABAB receptor activation regulates neuronal migration and neurite growth and specification by cAMP/LKB1. Nature Communications, 4: 1800. doi: 10.1038/ncomms2820
    [4]
    Bromet E, Andrade LH, Hwang I, Sampson NA, Alonso J, De Girolamo G, et al. 2011. Cross-national epidemiology of DSM-IV major depressive episode. BMC Medicine, 9: 90. doi: 10.1186/1741-7015-9-90
    [5]
    Callery PS, Geelhaar LA. 1985. 1-piperideine as an in vivo precursor of the γ-aminobutyric acid homologue 5-aminopentanoic acid. Journal of Neurochemistry, 45(3): 946−948. doi: 10.1111/j.1471-4159.1985.tb04085.x
    [6]
    Capitanio JP, Del Rosso LA, Calonder LA, Blozis SA, Penedo MCT. 2012. Behavioral effects of prenatal ketamine exposure in rhesus macaques are dependent on MAOA genotype. Experimental and Clinical Psychopharmacology, 20(3): 173−180. doi: 10.1037/a0026773
    [7]
    Carlyle BC, Kitchen RR, Kanyo JE, Voss EZ, Pletikos M, Sousa AMM, et al. 2017. A multiregional proteomic survey of the postnatal human brain. Nature Neuroscience, 20(12): 1787−1795. doi: 10.1038/s41593-017-0011-2
    [8]
    Chen TT, Chen X, Zhang SS, Zhu JW, Tang BX, Wang AK, et al. 2021. The genome sequence archive family: toward explosive data growth and diverse data types. Genomics, Proteomics & Bioinformatics, 19(4): 578−583.
    [9]
    CNCB-NGDC Members and Partners. 2022. Database resources of the national genomics data center, China National Center for bioinformation in 2022. Nucleic Acids Research, 50(D1): D27−D38. doi: 10.1093/nar/gkab951
    [10]
    Costello EJ, Mustillo S, Erkanli A, Keeler G, Angold A. 2003. Prevalence and development of psychiatric disorders in childhood and adolescence. Archives of General Psychiatry, 60(8): 837−844. doi: 10.1001/archpsyc.60.8.837
    [11]
    Danielsson A, Öst A, Nystrom FH, Strålfors P. 2005. Attenuation of insulin-stimulated insulin receptor substrate-1 serine 307 phosphorylation in insulin resistance of type 2 diabetes. Journal of Biological Chemistry, 280(41): 34389−34392. doi: 10.1074/jbc.C500230200
    [12]
    Doubleday PF, Ballif BA. 2014. Developmentally-dynamic murine brain proteomes and phosphoproteomes revealed by quantitative proteomics. Proteomes, 2(2): 191−207. doi: 10.3390/proteomes2020191
    [13]
    Dwivedi Y, Mondal AC, Rizavi HS, Faludi G, Palkovits M, Sarosi A, et al. 2006. Differential and brain region–specific regulation of Rap-1 and Epac in depressed suicide victims. Archives of General Psychiatry, 63(6): 639−648. doi: 10.1001/archpsyc.63.6.639
    [14]
    Eidenmüller J, Fath T, Maas T, Pool M, Sontag E, Brandt R. 2001. Phosphorylation-mimicking glutamate clusters in the proline-rich region are sufficient to simulate the functional deficiencies of hyperphosphorylated tau protein. Biochemical Journal, 357(3): 759−767. doi: 10.1042/bj3570759
    [15]
    Fiorentino H, Kuczewski N, Diabira D, Ferrand N, Pangalos MN, Porcher C, et al. 2009. GABAB receptor activation triggers BDNF release and promotes the maturation of GABAergic synapses. Journal of Neuroscience, 29(37): 11650−11661. doi: 10.1523/JNEUROSCI.3587-09.2009
    [16]
    Gaiarsa JL, Porcher C. 2013. Emerging neurotrophic role of GABAB receptors in neuronal circuit development. Frontiers in Cellular Neuroscience, 7: 206.
    [17]
    Golub MS, Bulleri AM, Hogrefe CE, Sherwood RJ. 2015. Bone growth in juvenile rhesus monkeys is influenced by 5HTTLPR polymorphisms and interactions between 5HTTLPR polymorphisms and fluoxetine. Bone, 79: 162−169. doi: 10.1016/j.bone.2015.05.042
    [18]
    Golub MS, Hackett EP, Hogrefe CE, Leranth C, Elsworth JD, Roth RH. 2017. Cognitive performance of juvenile monkeys after chronic fluoxetine treatment. Developmental Cognitive Neuroscience, 26: 52−61. doi: 10.1016/j.dcn.2017.04.008
    [19]
    Golub MS, Hogrefe CE. 2016. Sleep disturbance as detected by actigraphy in pre-pubertal juvenile monkeys receiving therapeutic doses of fluoxetine. Neurotoxicology and Teratology, 55: 1−7. doi: 10.1016/j.ntt.2016.02.006
    [20]
    Golub MS, Hogrefe CE, Bulleri AM. 2016a. Peer social interaction is facilitated in juvenile rhesus monkeys treated with fluoxetine. Neuropharmacology, 105: 553−560. doi: 10.1016/j.neuropharm.2016.02.025
    [21]
    Golub MS, Hogrefe CE, Bulleri AM. 2016b. Regulation of emotional response in juvenile monkeys treated with fluoxetine: MAOA interactions. European Neuropsychopharmacology, 26(12): 1920−1929. doi: 10.1016/j.euroneuro.2016.10.010
    [22]
    Golub MS, Hogrefe CE, Campos LJ, Fox AS. 2019. Serotonin transporter binding potentials in brain of juvenile monkeys 1 year after discontinuation of a 2-year treatment with fluoxetine. Biological Psychiatry:Cognitive Neuroscience and Neuroimaging, 4(11): 948−955. doi: 10.1016/j.bpsc.2019.06.012
    [23]
    Golub MS, Hogrefe CE, Sherwood RJ, Turck CW. 2018. Fluoxetine administration in juvenile monkeys: implications for pharmacotherapy in children. Frontiers in Pediatrics, 6: 21. doi: 10.3389/fped.2018.00021
    [24]
    He Y, Hogrefe CE, Grapov D, Palazoglu M, Fiehn O, Turck CW, et al. 2014. Identifying individual differences of fluoxetine response in juvenile rhesus monkeys by metabolite profiling. Translational Psychiatry, 4(11): e478. doi: 10.1038/tp.2014.116
    [25]
    Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E. 2015. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Research, 43(D1): D512−D520. doi: 10.1093/nar/gku1267
    [26]
    Humphrey SJ, Karayel O, James DE, Mann M. 2018. High-throughput and high-sensitivity phosphoproteomics with the EasyPhos platform. Nature Protocols, 13(9): 1897−1916. doi: 10.1038/s41596-018-0014-9
    [27]
    Johnson ECB, Dammer EB, Duong DM, Ping LY, Zhou MT, Yin LM, et al. 2020. Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nature Medicine, 26(5): 769−780. doi: 10.1038/s41591-020-0815-6
    [28]
    Kékesi KA, Juhász G, Simor A, Gulyássy P, Szegő ÉM, Hunyadi-Gulyás É, et al. 2012. Altered functional protein networks in the prefrontal cortex and amygdala of victims of suicide. PLoS One, 7(12): e50532. doi: 10.1371/journal.pone.0050532
    [29]
    Kilb W. 2012. Development of the GABAergic system from birth to adolescence. The Neuroscientist, 18(6): 613−630. doi: 10.1177/1073858411422114
    [30]
    Kim JH, Richardson R. 2007. A developmental dissociation of context and GABA effects on extinguished fear in rats. Behavioral Neuroscience, 121(1): 131−139. doi: 10.1037/0735-7044.121.1.131
    [31]
    Kinnally EL, Lyons LA, Abel K, Mendoza S, Capitanio JP. 2008. Effects of early experience and genotype on serotonin transporter regulation in infant rhesus macaques. Genes, Brain and Behavior, 7(4): 481−486. doi: 10.1111/j.1601-183X.2007.00383.x
    [32]
    Lazarevic V, Mantas I, Flais I, Svenningsson P. 2019. Fluoxetine suppresses glutamate- and GABA-mediated neurotransmission by altering SNARE complex. International Journal of Molecular Sciences, 20(17): 4247−4247. doi: 10.3390/ijms20174247
    [33]
    Leung CCY, Wong YH. 2017. Role of G protein-coupled receptors in the regulation of structural plasticity and cognitive function. Molecules, 22(7): 1239. doi: 10.3390/molecules22071239
    [34]
    Lopes S, Vaz-Silva J, Pinto V, Dalla C, Kokras N, Bedenk B, et al. 2016. Tau protein is essential for stress-induced brain pathology. Proceedings of the National Academy of Sciences of the United States of America, 113(26): E3755−E3763.
    [35]
    Mah VK, Ford-Jones EL. 2012. Spotlight on middle childhood: rejuvenating the ‘forgotten years’. Paediatrics & Child Health, 17(2): 81−83.
    [36]
    Mann JJ, Oquendo MA, Watson KT, Boldrini M, Malone KM, Ellis SP, et al. 2014. Anxiety in major depression and cerebrospinal fluid free gamma-aminobutyric acid. Depression and Anxiety, 31(10): 814−821. doi: 10.1002/da.22278
    [37]
    Möhler H, Polc P, Cumin R, Pieri L, Kettler R. 1979. Nicotinamide is a brain constituent with benzodiazepine-like actions. Nature, 278(5704): 563−565. doi: 10.1038/278563a0
    [38]
    Newman TK, Syagailo YV, Barr CS, Wendland JR, Champoux M, Graessle M, et al. 2005. Monoamine oxidase A gene promoter variation and rearing experience influences aggressive behavior in rhesus monkeys. Biological Psychiatry, 57(2): 167−172. doi: 10.1016/j.biopsych.2004.10.012
    [39]
    Pajer K, Andrus BM, Gardner W, Lourie A, Strange B, Campo J, et al. 2012. Discovery of blood transcriptomic markers for depression in animal models and pilot validation in subjects with early-onset major depression. Translational Psychiatry, 2(4): e101. doi: 10.1038/tp.2012.26
    [40]
    Paxinos G, Huang XF, Toga AW. 2000. The Rhesus Monkey Brain in Stereotaxic Coordinates. San Diego: Academic Press.
    [41]
    Reite M, Short R. 1983. Maternal separation studies: rationale and methodological considerations. Progress in Clinical and Biological Research, 131: 219−253.
    [42]
    Rudolph JD, De Graauw M, Van De Water B, Geiger T, Sharan R. 2016. Elucidation of signaling pathways from large-scale phosphoproteomic data using protein interaction networks. Cell Systems, 3(6): 585−593.e3. doi: 10.1016/j.cels.2016.11.005
    [43]
    Schildkraut JJ. 1965. The catecholamine hypothesis of affective disorders: a review of supporting evidence. American Journal of Psychiatry, 122(5): 509−522. doi: 10.1176/ajp.122.5.509
    [44]
    Selph SS, McDonagh MS. 2019. Depression in children and adolescents: evaluation and treatment. American Family Physician, 100(10): 609−617.
    [45]
    Shikanai M, Yuzaki M, Kawauchi T. 2018. Rab family small GTPases-mediated regulation of intracellular logistics in neural development. Histology and Histopathology, 33(8): 765−771.
    [46]
    Su SY, Hogrefe-Phi CE, Asara JM, Turck CW, Golub MS. 2016. Peripheral fibroblast metabolic pathway alterations in juvenile rhesus monkeys undergoing long-term fluoxetine administration. European Neuropsychopharmacology, 26(7): 1110−1118. doi: 10.1016/j.euroneuro.2016.03.017
    [47]
    The UniProt Consortium. 2021. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Research, 49(D1): D480−D489. doi: 10.1093/nar/gkaa1100
    [48]
    Tkachev A, Stekolshchikova E, Bobrovskiy DM, Anikanov N, Ogurtsova P, Park DI, et al. 2021. Long-term fluoxetine administration causes substantial lipidome alteration of the juvenile macaque brain. International Journal of Molecular Sciences, 22(15): 8089. doi: 10.3390/ijms22158089
    [49]
    von Knorring AL, Bohman M, von Knorring L, Oreland L. 1985. Platelet MAO activity as a biological marker in subgroups of alcoholism. Acta Psychiatrica Scandinavica, 72(1): 51−58. doi: 10.1111/j.1600-0447.1985.tb02570.x
    [50]
    Wang H, Diaz AK, Shaw TI, Li YX, Niu MM, Cho JH, et al. 2019. Deep multiomics profiling of brain tumors identifies signaling networks downstream of cancer driver genes. Nature Communications, 10(1): 3718. doi: 10.1038/s41467-019-11661-4
    [51]
    Yamada M, Higuchi T. 2002. Functional genomics and depression research: beyond the monoamine hypothesis. European Neuropsychopharmacology, 12(3): 235−244. doi: 10.1016/S0924-977X(02)00025-1
    [52]
    Yang C, Guo X, Wang GH, Wang HL, Liu ZC, Liu H, et al. 2014. Changes in tau phosphorylation levels in the hippocampus and frontal cortex following chronic stress. Brazilian Journal of Medical and Biological Research, 47(3): 237−244. doi: 10.1590/1414-431X20133275
    [53]
    Yang Y, Yang D, Tang G, Zhou C, Cheng K, Zhou J, et al. 2013. Proteomics reveals energy and glutathione metabolic dysregulation in the prefrontal cortex of a rat model of depression. Neuroscience, 247: 191−200. doi: 10.1016/j.neuroscience.2013.05.031
    [54]
    Zanivan S, Meves A, Behrendt K, Schoof EM, Neilson LJ, Cox J, et al. 2013. In vivo SILAC-based proteomics reveals phosphoproteome changes during mouse skin carcinogenesis. Cell Reports, 3(2): 552−566. doi: 10.1016/j.celrep.2013.01.003
  • ZR-2022-196 Supplementary Materials.rar
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (410) PDF downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return