• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)
Nadal-NicolásFrancisco M., Galindo-RomeroCaridad, Lucas-RuizFernando, Marsh-AmstrongNicholas, LiWei, Vidal-SanzManuel, Agudo-BarriusoMarta. 2023: 小鼠大鼠及猕猴视网膜神经节细胞标记物分析. 动物学研究, 44(1): 226-248. DOI: 10.24272/j.issn.2095-8137.2022.308
引用本文: Nadal-NicolásFrancisco M., Galindo-RomeroCaridad, Lucas-RuizFernando, Marsh-AmstrongNicholas, LiWei, Vidal-SanzManuel, Agudo-BarriusoMarta. 2023: 小鼠大鼠及猕猴视网膜神经节细胞标记物分析. 动物学研究, 44(1): 226-248. DOI: 10.24272/j.issn.2095-8137.2022.308
Francisco M. Nadal-Nicolás, Caridad Galindo-Romero, Fernando Lucas-Ruiz, Nicholas Marsh-Amstrong, Wei Li, Manuel Vidal-Sanz, Marta Agudo-Barriuso. 2023. Pan-retinal ganglion cell markers in mice, rats, and rhesus macaques. Zoological Research, 44(1): 226-248. DOI: 10.24272/j.issn.2095-8137.2022.308
Citation: Francisco M. Nadal-Nicolás, Caridad Galindo-Romero, Fernando Lucas-Ruiz, Nicholas Marsh-Amstrong, Wei Li, Manuel Vidal-Sanz, Marta Agudo-Barriuso. 2023. Pan-retinal ganglion cell markers in mice, rats, and rhesus macaques. Zoological Research, 44(1): 226-248. DOI: 10.24272/j.issn.2095-8137.2022.308

小鼠大鼠及猕猴视网膜神经节细胞标记物分析

Pan-retinal ganglion cell markers in mice, rats, and rhesus macaques

  • 摘要: 视网膜神经节细胞(RGCs)的明确鉴定是研究视网膜神经节细胞变性和神经保护的重要前提。在RGC特异性标记出现之前,RGCs通常是通过视网膜投射区注射逆行示踪剂来识别的。这是一种侵入性的技术,因而在高等哺乳动物(如猴子)的应用受限。在过去的十年中,出现了多个RGC标记方法。在这里,我们回顾和分析了9个标记物在大鼠、小鼠和猕猴身上用于识别所有或大多数RGCs(即泛RGC标记)的特点。在特异性、RGCs标记的比例,和反应RGC存活状态这三方面的最佳标记物是Brn3a (可标记视觉-形成RGCs)表达,以及RBPMS(可标记视觉和非视觉形成RGCs)。Neun在神经节细胞层中非RGC细胞也有表达,因此不具有RGC特异性。γ-SYN、TUJ 1和NF-L主要标记RGC轴突,所以在视网膜中央胞体的检测受到影响,但对RGC树突轴突形态学的研究有一定的意义。在大鼠视网膜中一些非RGCs也表达TUJ 1和NF-L。BM 88、ERRβ和PGP9.5偶尔也作为RGC标记物,在大鼠和猕猴以及小鼠中可标记大多数RGCs(ERRβ用于小鼠)。但PGP9.5在大鼠和猕猴一些非RGCs中也有表达,而BM 88和ERRβ不适合作为生存状态标记物。

     

    Abstract: Univocal identification of retinal ganglion cells (RGCs) is an essential prerequisite for studying their degeneration and neuroprotection. Before the advent of phenotypic markers, RGCs were normally identified using retrograde tracing of retinorecipient areas. This is an invasive technique, and its use is precluded in higher mammals such as monkeys. In the past decade, several RGC markers have been described. Here, we reviewed and analyzed the specificity of nine markers used to identify all or most RGCs, i.e., pan-RGC markers, in rats, mice, and macaques. The best markers in the three species in terms of specificity, proportion of RGCs labeled, and indicators of viability were BRN3A, expressed by vision-forming RGCs, and RBPMS, expressed by vision- and non-vision-forming RGCs. NEUN, often used to identify RGCs, was expressed by non-RGCs in the ganglion cell layer, and therefore was not RGC-specific. γ-SYN, TUJ1, and NF-L labeled the RGC axons, which impaired the detection of their somas in the central retina but would be good for studying RGC morphology. In rats, TUJ1 and NF-L were also expressed by non-RGCs. BM88, ERRβ, and PGP9.5 are rarely used as markers, but they identified most RGCs in the rats and macaques and ERRβ in mice. However, PGP9.5 was also expressed by non-RGCs in rats and macaques and BM88 and ERRβ were not suitable markers of viability.

     

/

返回文章
返回