留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Discovery of a wild, genetically pure Chinese giant salamander creates new conservation opportunities

Jing Chai Chen-Qi Lu Mu-Rong Yi Nian-Hua Dai Xiao-Dong Weng Ming-Xiao Di Yong Peng Yong Tang Qing-Hua Shan Kai Wang Huan-Zhang Liu Hai-Peng Zhao Jie-Qiong Jin Ru-Jun Cao Ping Lu Lai-Chun Luo Robert W. Murphy Ya-Ping Zhang Jing Che

Jing Chai, Chen-Qi Lu, Mu-Rong Yi, Nian-Hua Dai, Xiao-Dong Weng, Ming-Xiao Di, Yong Peng, Yong Tang, Qing-Hua Shan, Kai Wang, Huan-Zhang Liu, Hai-Peng Zhao, Jie-Qiong Jin, Ru-Jun Cao, Ping Lu, Lai-Chun Luo, Robert W. Murphy, Ya-Ping Zhang, Jing Che. Discovery of a wild, genetically pure Chinese giant salamander creates new conservation opportunities. Zoological Research, 2022, 43(3): 469-480. doi: 10.24272/j.issn.2095-8137.2022.101
Citation: Jing Chai, Chen-Qi Lu, Mu-Rong Yi, Nian-Hua Dai, Xiao-Dong Weng, Ming-Xiao Di, Yong Peng, Yong Tang, Qing-Hua Shan, Kai Wang, Huan-Zhang Liu, Hai-Peng Zhao, Jie-Qiong Jin, Ru-Jun Cao, Ping Lu, Lai-Chun Luo, Robert W. Murphy, Ya-Ping Zhang, Jing Che. Discovery of a wild, genetically pure Chinese giant salamander creates new conservation opportunities. Zoological Research, 2022, 43(3): 469-480. doi: 10.24272/j.issn.2095-8137.2022.101

中国大鲵野外纯种种群的发现为其有效保护带来新机遇

doi: 10.24272/j.issn.2095-8137.2022.101

Discovery of a wild, genetically pure Chinese giant salamander creates new conservation opportunities

Funds: This work was equally supported by the STS Program of Chinese Academy of Sciences, and the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31000000). The Animal Branch of the Germplasm Bank of Wild Species, Chinese Academy of Sciences (Large Research Infrastructure Funding), and Jiangxi Academy of Sciences (2021YSBG50008) partially supported it
More Information
  • 摘要: 濒危物种的有效保护需借助基础研究提供准确评估和行动依据。缺乏科学指导的保护行动可能会加速物种的灭绝。中国大鲵是一个不幸的实例:野外种群极度稀少,然而商业养殖导致了物种的人为迁移和杂交,同时大量未经遗传鉴定的养殖子代流入野外。以往基于“一个物种”认知下的保护措施收效甚微。野外种群数据的极度匮乏使得目前的保护行动难以开展。基于综合科学考察研究,该文报道在江西九岭山国家级自然保护区发现的大鲵野外种群。为期18个月的野外监测共记录包括成体、亚成体和新孵化幼鲵在内的700余尾个体,并连续两年观察到野外繁殖。基因组水平(简化基因组SNPs)分析支持该种群遗传分化显著且未受到其他省区大鲵的杂交污染。综合形态学和遗传分化证据,该研究描述一新种——江西大鲵Andrias jiangxiensis sp . nov .。这是我国首个遗传身份明确且野外稳定繁殖的大鲵纯种种群。这一发现提示,相较于以水域范围设置的水生生物保护区,囊括整个山、水生态系统的自然保护区设置更为有效;同时,强调了综合野外监测和群体基因组分析手段对调查大鲵野外种群及明确遗传身份的必要性。该研究为受人类活动影响(如人为迁移,过度利用等)而濒临灭绝的物种制定和调整保护计划提供了参考和示范。
    #Authors contributed equally to this work
  • Figure  1.  Map of survey localities in Jing’an County, northwest of Jiangxi, China

    The west part of black dashed line displays the historical distribution areas of CGS, upstream of River Liao. Red dashed line circles Daqi Mountain, which is closed to the public. Grey triangles indicate 16 sites surveyed without detection of individuals, while the red triangle and red line display the searching sites with detections.

    Figure  2.  Results of field-monitoring surveys in Daqi Mountain, Jiangxi Jiulingshan National Nature Reserve (Sep. 2020–Mar. 2022)

    A: Capture per person-hour of juveniles and adults during Sep. 2020–Mar. 2022. B, C: Activity periods of newborn larvae displayed by capture per person-hour in 2021 and 2022.

    Figure  3.  Genetic distinctiveness of CGS from clade U2 found in Jing’an County, Jiangxi, China

    A: A simplified phylogeny based on COI of mtDNA modified from Yan et al. (2018), in which clade U2 represents haplotypes found in Jing’an County, Jiangxi. The clade to which A. davidianus belongs remains uncertain. Clade D indicates the haplotypes of A. sligoi according to the analyses by Turvey et al. (2019). B: Maximum Likelihood (ML) network based on genomic SNPs for six clades. Light purple background marks the 28 individuals of clade U2. C, D: PcoA plots based on genomic SNPs for six clades. E: Genetic clustering (K=2–8, best K=7) based on genomic SNPs from six clades by ADMIXTURE analysis. Asterisks label 18 wild-caught individuals including larvae, juveniles, and adults from Daqi Mountain, diamonds in light purple indicate 10 farm-bred individuals. Colors in all figures correspond with the mtDNA clades.

    Figure  4.  Holotype of Andrias jiangxiensis sp. nov. (KIZ 037731) in preservative

    A–C: Holotype of A. jiangxiensis sp. nov., in dorsal (A), lateral (B), and ventral (C) views. D, E: Dorsal (D) and ventral (E) views of head of holotype of A. jiangxiensis sp. nov. F, G: Ventral view of the left hand (F) and left foot (G) of the holotype of A. jiangxiensis sp. nov. Photos by Chen-Qi Lu.

    Figure  5.  The holotype of Andrias jiangxiensis sp. nov. (KIZ 037731) in life

    A–C: Coloration of dorsum of whole body (A), head (B), and enlarged view (C) of left periocular area. Photos by Chen-Qi Lu.

    Figure  6.  Ontogenetic variation in coloration pattern

    A: Coloration of dorsum with spotted pattern in a juvenile with body length of ~20 cm. B: Coloration of dorsum having larger patch patterns in an adult with body length over 50 cm. Photos by Mu-Rong Yi.

    Figure  7.  The habitat of Andrias jiangxiensis sp. nov. in Daqi Mountain, Jing’an County, Jiangxi, China

    A, B: Summer (A) and winter (B) scene of 8–10 meters-wide stream with excellent vegetation coverage. C: A breeding cave for A. jiangxiensis sp. nov. found in a backwater bay of the stream. Red arrow indicates the exit of the cave. D: Enlarged area near the exit of the cave. Dashed circles in cyan indicate six larvae of A. jiangxiensis sp. nov., and the ones in white indicate the co-occurring shrimps and fishes. Photos by Mu-Rong Yi.

  • [1] Alexander DH, Novembre J, Lange K. 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 19(9): 1655−1664. doi: 10.1101/gr.094052.109
    [2] Blanchard E. 1871. On a new gigantic salamander (Sieboldia Davidiana, Blanch.) from western China. Annals and Magazine of Natural History, 8(45): 212−214.
    [3] Bòulenger EG. 1924. On a new giant salamander, living in the society's gardens. Proceedings of the Zoological Society of London, 94(1): 173−174. doi: 10.1111/j.1096-3642.1924.tb01494.x
    [4] Cauwelier E, Gilbey J, Jones CS, Noble LR, Verspoor E. 2012. Asymmetrical viability in backcrosses between highly divergent populations of Atlantic salmon (Salmo salar): implications for conservation. Conservation Genetics, 13(6): 1665−1669. doi: 10.1007/s10592-012-0400-8
    [5] Cheng YL, Zhang ZW. 2015. Analysis of the current situation of Chinese giant salamander industry in Shaanxi province. Scientific Fish Farming, 31(9): 3−4. (in Chinese)
    [6] CITES. 2021(2021-06-22). Convention on international trade in endangered species of wild fauna and flora. Appendices I, II and III. http://www.cites.org/eng/app/appendices.php.
    [7] Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK, Crandall KA, Bininda-Emonds ORP, et al. 2000. Considering evolutionary processes in conservation biology. Trends in Ecology & Evolution, 15(7): 290−295.
    [8] Cunningham AA, Turvey ST, Zhou F, Meredith HMR, Guan W, Liu XL, et al. 2016. Development of the Chinese giant salamander Andrias davidianus farming industry in Shaanxi Province, China: conservation threats and opportunities. Oryx, 50(2): 265−273. doi: 10.1017/S0030605314000842
    [9] Forcina G, Tang Q, Cros E, Guerrini M, Rheindt FE, Barbanera F. 2021. Genome-wide markers redeem the lost identity of a heavily managed gamebird. Proceedings of the Royal Society B:Biological Sciences, 288(1947): 20210285. doi: 10.1098/rspb.2021.0285
    [10] Foster RL, Mcmillan AM, Breisch AR, Roblee KJ, Schranz D. 2008. Analysis and comparison of three capture methods for the eastern hellbender (Cryptobranchus alleganiensis). Herpetological Review, 39(2): 181−186.
    [11] Fraser DJ, Bernatchez L. 2001. Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Molecular Ecology, 10(12): 2741−2752. doi: 10.1046/j.1365-294X.2001.t01-1-01411.x
    [12] Gibeaux R, Acker R, Kitaoka M, Georgiou G, van Kruijsbergen I, Ford B, et al. 2018. Paternal chromosome loss and metabolic crisis contribute to hybrid inviability in Xenopus. Nature, 553(7688): 337–341.
    [13] Hammerson G, Phillips C. 2004. Cryptobranchus alleganiensis. The IUCN Red List of Threatened Species 2004: e. T59077A11879843.https://dx. doi.org/10.2305/IUCN.UK.2004.RLTS.T59077A11879843.en.
    [14] Hohenlohe PA, Funk WC, Rajora OP. 2021. Population genomics for wildlife conservation and management. Molecular Ecology, 30(1): 62−82. doi: 10.1111/mec.15720
    [15] IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1. 2nd ed. Gland, Switzerland and Cambridge, UK: IUCN, 32.
    [16] Kaneko Y, Matsui M. 2004. Andrias japonicus. The IUCN Red List of Threatened Species 2004: e. T1273A3376261.https://dx. doi.org/10.2305/IUCN.UK.2004.RLTS.T1273A3376261.en.
    [17] Liang G, Geng BR, Zhao EM. 2004. Andrias davidianus. The IUCN Red List of Threatened Species 2004: e. T1272A3375181. http://dx. doi.org/10.2305/IUCN.UK.2004.RLTS.T1272A3375181.en.
    [18] Liang ZQ, Chen WT, Wang DQ, Zhang SH, Wang CR, He SP, et al. 2019. Phylogeographic patterns and conservation implications of the endangered Chinese giant salamander. Ecology and Evolution, 9(7): 3879−3890. doi: 10.1002/ece3.5014
    [19] Liu YN, Weng Q. 2014. Fauna in decline: plight of the pangolin. Science, 345(6199): 884.
    [20] Lu CQ, Chai J, Murphy RW, Che J. 2020a. Giant salamanders: farmed yet endangered. Science, 367(6481): 989.
    [21] Lu Y, Sandoval A, Voss S, Lai Z, Kneitz S, Boswell W, et al. 2020b. Oncogenic allelic interaction in Xiphophorus highlights hybrid incompatibility. Proceedings of the National Academy of Sciences of the United States of America, 117(47): 29786−29794. doi: 10.1073/pnas.2010133117
    [22] Mace GM, Collar NJ, Gaston KJ, Hilton-Taylor C, Akçakaya HR, Leader-Williams N, et al. 2008. Quantification of extinction risk: IUCN's system for classifying threatened species. Conservation Biology, 22(6): 1424−1442. doi: 10.1111/j.1523-1739.2008.01044.x
    [23] Martin SH, Dasmahapatra KK, Nadeau NJ, Salazar C, Walters JR, Simpson F, et al. 2013. Genome-wide evidence for speciation with gene flow in Heliconius butterflies. Genome Research, 23(11): 1817−1828. doi: 10.1101/gr.159426.113
    [24] May RM. 1990. Taxonomy as destiny. Nature, 347(6289): 129−130. doi: 10.1038/347129a0
    [25] Ministry of Ecology and Environment of the People's Republic of China. 2017. Nature reserves catalog of China (2017). http://www.mee.gov.cn/ywgz/zrstbh/zrbhdjg/201905/P020190514616282907461.pdf. (in Chinese)
    [26] Momigliano P, Florin AB, Merilä J. 2021. Biases in demographic modeling affect our understanding of recent divergence. Molecular Biology and Evolution, 38(7): 2967−2985.
    [27] Nater A, Mattle-Greminger MP, Nurcahyo A, Nowak MG, de Manuel M, Desai T, et al. 2017. Morphometric, behavioral, and genomic evidence for a new orangutan species. Current Biology, 27(22): 3487−3498.e10. doi: 10.1016/j.cub.2017.09.047
    [28] National Forestry and Grassland Administration of China. 2021(2021-02-08). Official release of the updated List of Wild Animals under Special State Protection in China. http://www.forestry.gov.cn/main/586/20210208/095403793167571.html. (in Chinese)
    [29] Okada S, Utsunomiya T, Okada T, Felix ZI, Ito F. 2008. Characteristics of Japanese giant salamander (Andrias japonicus) populations in two small tributary streams in Hiroshima prefecture, western Honshu, Japan. Herpetological Conservation and Biology, 3(2): 192−202.
    [30] Powell DL, García-Olazábal M, Keegan M, Reilly P, Du K, Díaz-Loyo AP, et al. 2020. Natural hybridization reveals incompatible alleles that cause melanoma in swordtail fish. Science, 368(6492): 731−736. doi: 10.1126/science.aba5216
    [31] Schilling MP, Gompert Z, Li FW, Windham MD, Wolf PG. 2018. Admixture, evolution, and variation in reproductive isolation in the Boechera puberula clade. BMC Evolutionary Biology, 18(1): 61. doi: 10.1186/s12862-018-1173-6
    [32] Shaffer HB, Gidiş M, McCartney-Melstad E, Neal KM, Oyamaguchi HM, Tellez M, et al. 2015. Conservation genetics and genomics of amphibians and reptiles. Annual Review of Animal Biosciences, 3: 113−138. doi: 10.1146/annurev-animal-022114-110920
    [33] Shu GC, Liu P, Zhao T, Li C, Hou YM, Zhao CL, et al. 2021. Disordered translocation is hastening local extinction of the Chinese giant salamander. Asian Herpetological Research, 12(3): 271−279.
    [34] Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9): 1312−1313. doi: 10.1093/bioinformatics/btu033
    [35] Sun XW, Liu DY, Zhang XF, Li WB, Liu H, Hong WG, et al. 2013. SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS One, 8(3): e58700. doi: 10.1371/journal.pone.0058700
    [36] Tapley B, Chen S, Turvey ST, Redbond J, Okada S, Cunningham AA. 2017. A sustainable future for Chinese giant salamanders: Chinese giant salamander field survey manual. Technical Report, Zoological Society of London.https://www.amphibians.org/wp-content/uploads/2018/12/CGS-field-manual-final.pdf.
    [37] Turvey ST, Chen S, Tapley B, Wei G, Xie F, Yan F, et al. 2018. Imminent extinction in the wild of the world's largest amphibian. Current Biology, 28(10): R592−R594. doi: 10.1016/j.cub.2018.04.005
    [38] Turvey ST, Marr MM, Barnes I, Brace S, Tapley B, Murphy RW, et al. 2019. Historical museum collections clarify the evolutionary history of cryptic species radiation in the world's largest amphibians. Ecology and Evolution, 9(18): 10070−10084. doi: 10.1002/ece3.5257
    [39] Wang J, Parham JF, Shi HT. 2021. China's turtles need protection in the wild. Science, 371(6528): 473.
    [40] Wang J, Zhang HX, Xie F, Wei G, Jiang JP. 2017. Genetic bottlenecks of the wild Chinese giant salamander in karst caves. Asian Herpetological Research, 8(3): 174−183.
    [41] Wang XM, Zhang KJ, Wang ZH, Ding YZ, Wu W, Huang S. 2004. The decline of the Chinese giant salamander Andrias davidianus and implications for its conservation. Oryx, 38(2): 197−202. doi: 10.1017/S0030605304000341
    [42] Yan F, Lü JC, Zhang BL, Yuan ZY, Zhao HP, Huang S, et al. 2018. The Chinese giant salamander exemplifies the hidden extinction of cryptic species. Current Biology, 28(10): R590−R592. doi: 10.1016/j.cub.2018.04.004
    [43] Yang AS, Liu GJ. 1978. Bulletin on artificial propagation of giant salamanders. Hunan Fishery Science and Technology, (4): 29. (in Chinese)
    [44] Yang JA, Lee SH, Goddard ME, Visscher PM. 2011. GCTA: a tool for genome-wide complex trait analysis. The American Journal of Human Genetics, 88(1): 76−82. doi: 10.1016/j.ajhg.2010.11.011
    [45] Zhang KJ, Wang XM, Wu W, Wang ZH, Huang S. 2002. Advances in conservation biology of Chinese giant salamander. Biodiversity Science, 10(3): 291−297. (in Chinese) doi: 10.17520/biods.2002040
  • ZR-2022-101 Supplementary Materials.zip
  • 加载中
图(7)
计量
  • 文章访问数:  3337
  • HTML全文浏览量:  1358
  • PDF下载量:  447
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-10
  • 录用日期:  2022-04-22
  • 网络出版日期:  2022-04-29
  • 刊出日期:  2022-05-18

目录

    /

    返回文章
    返回