留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

DNA methylation-mediated expression of zinc finger protein 615 affects embryonic development in Bombyx mori

Guan-Feng Xu Cheng-Cheng Gong Yu-Lin Tian Tong-Yu Fu Yi-Guang Lin Hao Lyu Yu-Ling Peng Chun-Mei Tong Qi-Li Feng Qi-Sheng Song Si-Chun Zheng

Guan-Feng Xu, Cheng-Cheng Gong, Yu-Lin Tian, Tong-Yu Fu, Yi-Guang Lin, Hao Lyu, Yu-Ling Peng, Chun-Mei Tong, Qi-Li Feng, Qi-Sheng Song, Si-Chun Zheng. DNA methylation-mediated expression of zinc finger protein 615 affects embryonic development in Bombyx mori. Zoological Research, 2022, 43(4): 552-565. doi: 10.24272/j.issn.2095-8137.2022.031
Citation: Guan-Feng Xu, Cheng-Cheng Gong, Yu-Lin Tian, Tong-Yu Fu, Yi-Guang Lin, Hao Lyu, Yu-Ling Peng, Chun-Mei Tong, Qi-Li Feng, Qi-Sheng Song, Si-Chun Zheng. DNA methylation-mediated expression of zinc finger protein 615 affects embryonic development in Bombyx mori. Zoological Research, 2022, 43(4): 552-565. doi: 10.24272/j.issn.2095-8137.2022.031

DNA甲基化通过调控锌指蛋白615表达影响家蚕的胚胎发育

doi: 10.24272/j.issn.2095-8137.2022.031

DNA methylation-mediated expression of zinc finger protein 615 affects embryonic development in Bombyx mori

Funds: This work was supported by the National Natural Science Foundation of China (31872286, 32100374)
More Information
  • 摘要: 细胞分裂和分化是胚胎从受精卵发育成多细胞个体的重要步骤,DNA甲基化通过调控基因表达而影响胚胎发育的过程。然而,昆虫DNA甲基化调控胚胎发育的机制仍不清楚。该文研究了DNA甲基化对家蚕早期胚胎的影响。早期胚胎的DNA甲基化组和转录组分析表明,5-甲基胞嘧啶(5mC)主要发生在蛋白质代谢相关基因的基因体5’端区域。DNA甲基转移酶1(Dnmt1)催化转录因子锌指蛋白615(ZnF615)基因的甲基化修饰,从而使ZnF615表达上调,并结合到蛋白质代谢相关基因而调控这些基因的表达。Dnmt1 RNAi显示DNA甲基化介导ZnF615调控了非甲基化修饰的胚胎发育所需的营养代谢相关基因的表达。卵巢和胚胎中的ZnF615基因的5mC位点相同。与Dnmt1敲除类似,敲除ZnF615也可以降低家蚕的胚胎孵化率和卵巢的产卵数。对ZnF615基因甲基化率的分析表明,亲本的卵巢和后代胚胎中的ZnF615基因的5mC位点相同,但5mC比率加倍。因此,该研究结果证明了Dnmt1促进转录因子ZnF615的基因内DNA甲基化,增强了其表达而确保了家蚕卵巢和胚胎发育。
  • Figure  1.  Effect of Dnmt1 knockout on embryonic development and egg hatching in B. mori

    A: Schematic of nucleic acid base deletion site in Dnmt1. B: Functional domain (top) and western blot (bottom) analysis of Dnmt1 protein in wild-type (WT) and Dnmt1-/- mutant. C: Changes in hatching rate of WT and Dnmt1-/- mutant. Each point represents the embryo hatching rate of female WT or Dnmt1-/- silkworms. D: Morphology and structure of WT and Dnmt1-/- embryos. Significant differences were determined by t-test (*: P<0.05; **:P<0.01; ***: P<0.001).

    Figure  2.  Identification of DNA methylation-modified genes affecting embryonic development in B. mori

    A: qRT-PCR (top) and dot blot (bottom) analyses of methyltransferase (Dnmt1) expression levels and 5mC levels at six different embryonic development stages. B: Distribution of mC methylation in CG, CHG, and CHH contexts (H represents A, C, or T) in different gene regions (gene body, exon, intron, and 2 kb upstream and downstream of gene body). C: mCG levels in genes with different expression levels. Genes were classified into four groups based on mean expression levels (High expression: FPKM>100; Middle expression: 10<FPKM≤100; Low expression: FPKM<10; No expression: FPKM<1). D: Volcano plot analysis of differentially expressed genes (DEGs) after Dnmt1 RNAi at blastoderm stage (top). Venn diagram comparing DEGs identified by RNA-seq after Dnmt1 RNAi and methylation genes identified by WGBS in embryos (bottom). E: KEGG analysis of DEGs after Dnmt1 RNAi in B. mori embryos. F: Hierarchical clustering heat map of Dnmt1 and 23 genes both methylated and differentially expressed in (D) during the six different stages of embryo development (fertilized egg, blastoderm, germ-band, organogenesis, reversal period, and head pigmentation).

    Figure  3.  DNA methylation of ZnF615 by Dnmt1 affects B. mori embryonic development

    A: Analysis of functional domain of ZnF615 protein. B: Changes in hatching rate after ZnF615 dsRNA treatment. dsRNA was injected into B. mori embryos within 2 h post-oviposition. Dn: n-Day of embryonic development. C: Change in ZnF615 mRNA levels after Dnmt1 RNAi in B. mori embryos. D: Changes in mCG levels in upstream 2 kb, gene body, and downstream 2 kb regions of ZnF615 gene in B. mori embryos after Dnmt1 RNAi. Significant differences were determined by t-test (*: P<0.05; **: P<0.01).

    Figure  4.  Effect of DNA methylation in promoter and gene body on transcription of ZnF615 gene

    A: Schematic of eight 100 bp fragments with the largest differences in mCG levels in promoter and gene body of ZnF615 gene after Dnmt1 RNAi. B: Effects of different promoter (top) and gene body (bottom) regions on luciferase activity. Different regions (regions 1–4) of promoter fragments were inserted upstream of the actin promoter and luciferase ORF. Different regions (regions 5–8) of the gene body were constructed into the luciferase vector between the actin promoter and luciferase ORF. C: Changes in activity of luciferase reporters containing WT or cytosine-mutated region 5 (top) or 8 (bottom) of the gene body of ZnF615 in Bm12 cells co-transfected with dsDnmt1 or dsGFP. Significant differences were determined by t-test (*: P<0.05; **: P<0.01).

    Figure  5.  EMSA analysis of Dnmt1 binding with regions 5 and 7 in ZnF615 gene body

    A: Binding of nuclear proteins isolated from B. mori embryos with region 5 probe. B: Binding of nuclear proteins isolated from B. mori embryos with region 7 probe. Cold probe is unlabeled region 5 or 7 oligos. C: Supershifted band was detected using anti-Dnmt1 antibody. IgG was used as a negative control. Sequences of WT and mutant region 5 and 7 probes are shown in Supplementary Table S9.

    Figure  6.  Loss-of-function analysis of ZnF615 in B. mori embryos

    A: Expression patterns of Dnmt1 and ZnF615 in different tissues, including epidermis, silk gland, testis, ovary, gut, wing disc, and fat body (top), and at different developmental stages, including embryo, 1st–5th instar larval, wandering larval, pupal, and adult stages (bottom). B: Schematic of nucleic acid base deletion site in ZnF615 (top). C: Functional domain analysis of ZnF615 protein in WT and ZnF615-/- mutant. D: Western blot analysis of ZnF615 protein in WT and ZnF615-/- mutant embryos (top). Hatching rates in WT and ZnF615-/- mutant (bottom). Each point represents an embryo hatching rate of female WT or ZnF615-/- silkworms. E: Morphology and structure of WT and ZnF615-/- mutant embryos. Significant differences were determined by t-test (*: P<0.05; **: P<0.01; ***: P<0.001).

    Figure  7.  DAP-seq analysis of ZnF615 in B. mori embryos

    A: Overview of DAP-seq experimental process. cDNA of ZnF615 ORF fused to Halo affinity tag was expressed in vitro and recombinant protein was bound to ligand-coupled beads. Genomic DNA at blastoderm stage of B. mori embryo was ultra-sonicated to 200 bp fragments, which were ligated with Illumina-based sequencing adaptors. HaloTag-ZnF615 protein was then incubated with adapter-ligated genomic DNA library. After unbound DNA fragments were washed away, the ZnF615-bound fragments were released. Released DNA fragments were then purified and sequenced. B: Peak frequency in different gene body regions between 2 kb upstream and downstream. C: Top-ranked motif in ZnF615 DAP-seq data was TTTTTATTGTTTTT. TSS: transcription start site; TTS: transcription termination site. Motifs were determined by MEME analysis using top-ranked peaks. D: Venn diagram comparing DEGs identified by RNA-seq after Dnmt1 RNAi and ZnF615 binding genes by DAP-Seq at blastoderm stage of embryo (top). Change in mRNA levels of genes both peak related and differentially expressed after Dnmt1 RNAi in ZnF615 RNAi B. mori embryos (bottom). E: Changes in mRNA levels of DEGs related to nutrient metabolism pathways enriched by Dnmt1 RNAi in ZnF615 RNAi B. mori embryos. F: Analysis of mCG levels and regions of ZnF615 in B. mori ovary and blastoderm stage of embryo. Significance of results was determined by t-test (*: P<0.05; **: P<0.01).

  • [1] Bartlett A, O'Malley RC, Huang SC, Galli M, Nery JR, Gallavotti A, et al. 2017. Mapping genome-wide transcription-factor binding sites using DAP-seq. Nature Protocols, 12(8): 1659−1672. doi: 10.1038/nprot.2017.055
    [2] Bewick AJ, Sanchez Z, Mckinney EC, Moore AJ, Moore PJ, Schmitz RJ. 2019. Dnmt1 is essential for egg production and embryo viability in the large milkweed bug. Oncopeltus fasciatus. Epigenetics & Chromatin, 12(1): 6.
    [3] Bird A. 2002. DNA methylation patterns and epigenetic memory. Genes & Development, 16(1): 6−21.
    [4] Boiani M, Eckardt S, Schöler HR, McLaughlin KJ. 2002. Oct4 distribution and level in mouse clones: consequences for pluripotency. Genes & Development, 16(10): 1209−1219.
    [5] Bonasio R, Li QY, Lian JM, Mutti NS, Jin LJ, Zhao HM, et al. 2012. Genome-wide and caste-specific DNA methylomes of the ants Camponotus floridanus and Harpegnathos saltator. Current Biology, 22(19): 1755–1764.
    [6] Bortvin A, Eggan K, Skaletsky H, Akutsu H, Berry DL, Yanagimachi R, et al. 2003. Incomplete reactivation of Oct4-related genes in mouse embryos cloned from somatic nuclei. Development, 130(8): 1673−1680. doi: 10.1242/dev.00366
    [7] Byrne JA, Simonsson S, Western PS, Gurdon JB. 2003. Nuclei of adult mammalian somatic cells are directly reprogrammed to oct-4 stem cell gene expression by amphibian oocytes. Current Biology, 13(14): 1206−1213. doi: 10.1016/S0960-9822(03)00462-7
    [8] Chodavarapu RK, Feng SH, Bernatavichute YV, Chen PY, Stroud H, Yu YC, et al. 2010. Relationship between nucleosome positioning and DNA methylation. Nature, 466(7304): 388−392. doi: 10.1038/nature09147
    [9] Dos Santos Mendonça A, Silveira MM, Rios ÁFL, Mangiavacchi PM, Caetano AR, Dode MAN, et al. 2019. DNA methylation and functional characterization of the XIST gene during in vitro early embryo development in cattle. Epigenetics, 14(6): 568−588. doi: 10.1080/15592294.2019.1600828
    [10] Falckenhayn C, Boerjan B, Raddatz G, Frohme M, Schoofs L, Lyko F. 2013. Characterization of genome methylation patterns in the desert locust Schistocerca gregaria. Journal of Experimental Biology, 216(8): 1423–1429.
    [11] Feliciello I, Parazajder J, Akrap I, Ugarković Đ. 2013. First evidence of DNA methylation in insect Tribolium castaneum: environmental regulation of DNA methylation within heterochromatin. Epigenetics, 8(5): 534−541. doi: 10.4161/epi.24507
    [12] Glastad KM, Hunt BG, Goodisman MAD. 2014. Evolutionary insights into DNA methylation in insects. Current Opinion in Insect Science, 1: 25−30. doi: 10.1016/j.cois.2014.04.001
    [13] Glastad KM, Hunt BG, Yi SV, Goodisman MAD. 2011. DNA methylation in insects: on the brink of the epigenomic era. Insect Molecular Biology, 20(5): 553−565. doi: 10.1111/j.1365-2583.2011.01092.x
    [14] Greenberg MVC, Bourc'his D. 2019. The diverse roles of DNA methylation in mammalian development and disease. Nature Reviews Molecular Cell Biology, 20(10): 590−607. doi: 10.1038/s41580-019-0159-6
    [15] Hellman A, Chess A. 2007. Gene body-specific methylation on the active X chromosome. Science, 315(5815): 1141−1143. doi: 10.1126/science.1136352
    [16] Khurad AM, Zhang MJ, Deshmukh CG, Bahekar RS, Tiple AD, Zhang CX. 2009. A new continuous cell line from larval ovaries of silkworm. Bombyx mori. In Vitro Cellular & Developmental Biology-Animal, 45(8): 414−419.
    [17] Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods, 12(4): 357−360. doi: 10.1038/nmeth.3317
    [18] Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4): 357−359. doi: 10.1038/nmeth.1923
    [19] Levin E, McCue MD, Davidowitz G. 2017. More than just sugar: allocation of nectar amino acids and fatty acids in a Lepidopteran. Proceedings of the Royal Society B:Biological Sciences, 284(1848): 20162126. doi: 10.1098/rspb.2016.2126
    [20] Li B, Hu P, Zhu LB, You LL, Cao HH, Wang J, et al. 2020. DNA methylation is correlated with gene expression during diapause termination of early embryonic development in the silkworm (Bombyx mori). International Journal of Molecular Sciences, 21(2): 671. doi: 10.3390/ijms21020671
    [21] Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, et al. 2009. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 462(7271): 315−322. doi: 10.1038/nature08514
    [22] Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25(4): 402−408. doi: 10.1006/meth.2001.1262
    [23] Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12): 550. doi: 10.1186/s13059-014-0550-8
    [24] Lyko F, Foret S, Kucharski R, Wolf S, Falckenhayn C, Maleszka R. 2010. The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biology, 8(11): e1000506. doi: 10.1371/journal.pbio.1000506
    [25] Lyko F, Maleszka R. 2011. Insects as innovative models for functional studies of DNA methylation. Trends in Genetics, 27(4): 127−131. doi: 10.1016/j.tig.2011.01.003
    [26] Lyu H, Xu GF, Peng XZ, Gong CC, Peng YL, Song QS, et al. 2021. Interacting C/EBPg and YBP regulate DNA methyltransferase 1 expression in Bombyx mori embryos and ovaries. Insect Biochemistry and Molecular Biology, 134: 103583. doi: 10.1016/j.ibmb.2021.103583
    [27] Meng H, Cao Y, Qin JZ, Song XY, Zhang Q, Shi Y, et al. 2015. DNA methylation, its mediators and genome integrity. International Journal of Biological Sciences, 11(5): 604−617. doi: 10.7150/ijbs.11218
    [28] Naito Y, Hino K, Bono H, Ui-Tei K. 2015. CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics, 31(7): 1120−1123. doi: 10.1093/bioinformatics/btu743
    [29] Ramírez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, et al. 2016. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Research, 44(W1): W160−W165. doi: 10.1093/nar/gkw257
    [30] Razin A, Riggs AD. 1980. DNA methylation and gene function. Science, 210(4470): 604−610. doi: 10.1126/science.6254144
    [31] Rishi V, Bhattacharya P, Chatterjee R, Rozenberg J, Zhao JF, Glass K, et al. 2010. CpG methylation of half-CRE sequences creates C/EBPα binding sites that activate some tissue-specific genes. Proceedings of the National Academy of Sciences of the United States of America, 107(47): 20311−20316. doi: 10.1073/pnas.1008688107
    [32] Sarda S, Zeng J, Hunt BG, Yi SV. 2012. The Evolution of invertebrate gene body methylation. Molecular Biology and Evolution, 29(8): 1907−1916. doi: 10.1093/molbev/mss062
    [33] Simola DF, Wissler L, Donahue G, Waterhouse RM, Helmkampf M, Roux J, et al. 2013. Social insect genomes exhibit dramatic evolution in gene composition and regulation while preserving regulatory features linked to sociality. Genome Research, 23(8): 1235−1247. doi: 10.1101/gr.155408.113
    [34] Simonsson S, Gurdon J. 2004. DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei. Nature Cell Biology, 6(10): 984−990. doi: 10.1038/ncb1176
    [35] Slieker RC, Roost MS, van Iperen L, Suchiman HED, Tobi EW, Carlotti F, et al. 2015. DNA methylation landscapes of human fetal development. PLoS Genetics, 11(10): e1005583. doi: 10.1371/journal.pgen.1005583
    [36] Smith ZD, Chan MM, Humm KC, Karnik R, Mekhoubad S, Regev A, et al. 2014. DNA methylation dynamics of the human preimplantation embryo. Nature, 511(7511): 611−615. doi: 10.1038/nature13581
    [37] Takebayashi SI, Tamura T, Matsuoka C, Okano M. 2007. Major and essential role for the DNA methylation mark in mouse embryogenesis and stable association of DNMT1 with newly replicated regions. Molecular and Cellular Biology, 27(23): 8243−8258. doi: 10.1128/MCB.00899-07
    [38] Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. 2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols, 7(3): 562−578. doi: 10.1038/nprot.2012.016
    [39] Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM. 2009. A census of human transcription factors: function, expression and evolution. Nature Reviews Genetics, 10(4): 252−263. doi: 10.1038/nrg2538
    [40] Ventós-Alfonso A, Ylla G, Montañes JC, Belles X. 2020. DNMT1 promotes genome methylation and early embryo development in cockroaches. iScience, 23(12): 101778. doi: 10.1016/j.isci.2020.101778
    [41] Wang J, Xia QY, He XM, Dai MT, Ruan J, Chen J, et al. 2005. SilkDB: a knowledgebase for silkworm biology and genomics. Nucleic Acids Research, 33: D399−D402.
    [42] Wang X, Wheeler D, Avery A, Rago A, Choi JH, Colbourne JK, et al. 2013. Function and evolution of DNA methylation in Nasonia vitripennis. PLoS Genetics, 9(10): e1003872. doi: 10.1371/journal.pgen.1003872
    [43] Weirauch MT, Hughes TR. 2011. A catalogue of eukaryotic transcription factor types, their evolutionary origin, and species distribution. Subcellular Biochemistry, 52: 25−73.
    [44] Werren JH, Richards S, Desjardins CA, Niehuis O, Gadau J, Colbourne JK, et al. 2010. Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science, 327(5963): 343−348. doi: 10.1126/science.1178028
    [45] Wolf SF, Jolly DJ, Lunnen KD, Friedmann T, Migeon BR. 1984. Methylation of the hypoxanthine phosphoribosyltransferase locus on the human X chromosome: implications for X-chromosome inactivation. Proceedings of the National Academy of Sciences of the United States of America, 81(9): 2806−2810. doi: 10.1073/pnas.81.9.2806
    [46] Wu SY, Tong XL, Li CL, Lu KP, Tan D, Hu H, et al. 2019. Genome-wide identification and expression profiling of the C2H2-type zinc finger protein genes in the silkworm Bombyx mori. PeerJ, 7: e7222.
    [47] Xi YX, Li W. 2009. BSMAP: whole genome bisulfite sequence MAPping program. BMC Bioinformatics, 10: 232. doi: 10.1186/1471-2105-10-232
    [48] Xia QY, Zhou ZY, Lu C, Cheng DJ, Dai FY, Li B, et al. 2004. A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science, 306(5703): 1937−1940. doi: 10.1126/science.1102210
    [49] Xiang H, Li X, Dai FY, Xu X, Tan AJ, Chen L, et al. 2013. Comparative methylomics between domesticated and wild silkworms implies possible epigenetic influences on silkworm domestication. BMC Genomics, 14: 646. doi: 10.1186/1471-2164-14-646
    [50] Xiang H, Zhu JD, Chen Q, Dai FY, Li X, Li MW, et al. 2010. Single base-resolution methylome of the silkworm reveals a sparse epigenomic map. Nature Biotechnology, 28(5): 516−520. doi: 10.1038/nbt.1626
    [51] Xu GF, Gong CC, Lyu H, Deng HM, Zheng SC. 2022a. Dynamic transcriptome analysis of Bombyx mori embryonic development. Insect Science, 29(2): 344−362. doi: 10.1111/1744-7917.12934
    [52] Xu GF, Lyu H, Yi YQ, Peng YL, Feng QL, Song QS, et al. 2021. Intragenic DNA methylation regulates insect gene expression and reproduction through the MBD/Tip60 complex. iScience, 24(2): 102040. doi: 10.1016/j.isci.2021.102040
    [53] Xu GF, Tian YL, Peng YL, Zheng SC. 2022b. Knock down of target genes by RNA interference in the embryos of lepidopteran insect. Bombyx mori. STAR Protocols, 3(1): 101219. doi: 10.1016/j.xpro.2022.101219
    [54] Xu GF, Yi YQ, Lyu H, Gong CC, Feng QL, Song QS, et al. 2020. DNA methylation suppresses chitin degradation and promotes the wing development by inhibiting Bmara-mediated chitinase expression in the silkworm. Bombyx mori. Epigenetics & Chromatin, 13(1): 34.
    [55] Xu GF, Zhang J, Lyu H, Song QS, Feng QL, Xiang H, et al. 2018. DNA methylation mediates BmDeaf1-regulated tissue- and stage-specific expression of BmCHSA-2b in the silkworm. Bombyx mori. Epigenetics & Chromatin, 11(1): 32.
    [56] Xu L, Huang HJ, Zhou X, Liu CW, Bao YY. 2017. Pancreatic lipase-related protein 2 is essential for egg hatching in the brown planthopper. Nilaparvata lugens. Insect Molecular Biology, 26(3): 277−285. doi: 10.1111/imb.12290
    [57] Yan H, Bonasio R, Simola DF, Liebig J, Berger SL, Reinberg D. 2015. DNA methylation in social insects: how epigenetics can control behavior and longevity. Annual Review of Entomology, 60: 435−452. doi: 10.1146/annurev-ento-010814-020803
    [58] Yu GC, Wang LG, He QY. 2015. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics, 31(14): 2382−2383. doi: 10.1093/bioinformatics/btv145
    [59] Zemach A, McDaniel IE, Silva P, Zilberman D. 2010. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science, 328(5980): 916−919. doi: 10.1126/science.1186366
    [60] Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. 2008. Model-based analysis of ChIP-Seq (MACS). Genome Biology, 9(9): R137. doi: 10.1186/gb-2008-9-9-r137
    [61] Zilberman D. 2008. The evolving functions of DNA methylation. Current Opinion in Plant Biology, 11(5): 554−559. doi: 10.1016/j.pbi.2008.07.004
    [62] Zwier MV, Verhulst EC, Zwahlen RD, Beukeboom LW, van de Zande L. 2012. DNA methylation plays a crucial role during early Nasonia development. Insect Molecular Biology, 21(1): 129−138. doi: 10.1111/j.1365-2583.2011.01121.x
  • 加载中
图(7)
计量
  • 文章访问数:  273
  • HTML全文浏览量:  127
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-30
  • 录用日期:  2022-05-24
  • 网络出版日期:  2022-05-24

目录

    /

    返回文章
    返回