留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Identification of global alternative splicing and sex-specific splicing via comparative transcriptome analysis of gonads of Chinese tongue sole (Cynoglossus semilaevis)

Yi-Fang Lu Qian Liu Kai-Qiang Liu Hong-Yan Wang Cheng-Hua Li Qian Wang Chang-Wei Shao

Yi-Fang Lu, Qian Liu, Kai-Qiang Liu, Hong-Yan Wang, Cheng-Hua Li, Qian Wang, Chang-Wei Shao. Identification of global alternative splicing and sex-specific splicing via comparative transcriptome analysis of gonads of Chinese tongue sole (Cynoglossus semilaevis). Zoological Research, 2022, 43(3): 319-330. doi: 10.24272/j.issn.2095-8137.2021.406
Citation: Yi-Fang Lu, Qian Liu, Kai-Qiang Liu, Hong-Yan Wang, Cheng-Hua Li, Qian Wang, Chang-Wei Shao. Identification of global alternative splicing and sex-specific splicing via comparative transcriptome analysis of gonads of Chinese tongue sole (Cynoglossus semilaevis). Zoological Research, 2022, 43(3): 319-330. doi: 10.24272/j.issn.2095-8137.2021.406

通过比较转录组分析鉴定半滑舌鳎(Cynoglossus semilaevis)性腺的可变剪切和性别特异性剪切

doi: 10.24272/j.issn.2095-8137.2021.406

Identification of global alternative splicing and sex-specific splicing via comparative transcriptome analysis of gonads of Chinese tongue sole (Cynoglossus semilaevis)

Funds: This work was supported by the National Natural Science Foundation of China (31722058, 31802275, and 31472269); National Key R&D Program of China (2018YFD0900301); AoShan Talents Cultivation Program Supported by Qingdao National Laboratory for Marine Science and Technology (2017ASTCP-ES06); Taishan Scholar Project Fund of Shandong of China to C.W.S.; National Ten-Thousands Talents Special Support Program to C.W.S.; Central Public-Interest Scientific Institution Basal Research Fund, CAFS (2020TD19); Central Public-interest Scientific Institution Basal Research Fund, YSFRI, CAFS (20603022021018); China Agriculture Research System (CARS-47-G03); and Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University (KFKT2019ZD03).
More Information
  • 摘要: 半滑舌鳎(Cynoglossus semilaevis)是一种具有ZZ/ZW性别决定系统的重要海水经济鱼类,其性别决定和分化受温度的影响。可变剪切(AS)是调节性别决定和性腺分化相关基因表达的重要机制之一,但在鱼类中鲜有报道。在该研究中,我们结合全长转录组(Iso-Seq)和RNA测序(RNA-Seq),对半滑舌鳎的雌雄性腺进行了分析。在雌性和雄性中分别获得了32 341和81 883个全长转录本。共鉴定出8 279个AS基因,其中2 639个基因在雄性和雌性中存在差异可变剪切(DAS)。许多DAS基因和DEG的交集基因富集在“减数分裂细胞周期”通路,性腺分化相关基因如esrrbwt1a等存在性别特异转录本。该研究首次揭示了半滑舌鳎雌雄性腺转录组中的AS事件,发现了精巢活跃转录的特征,为研究AS调控半滑舌鳎性腺分化的分子机制提供了候选基因。
  • Figure  1.  Light microscope images of C. semilaevis gonads at 6 mpf

    A: Cross-section of ovary at different magnifications (left bar: 10 μm; right bar: 50 μm). B: Cross-section of testis at different magnifications (left bar: 10 μm; right bar: 50 μm). OC, ovarian cavity; OL, ovarian lobule; OG, oogonium; OO, oocyte; SL, seminal lobule; SV, seminal vesicle; SG, spermatogonium; SC, spermatocyte; SZ, spermatozoa.

    Figure  2.  Number and type distribution of AS events in gonads of C. semilaevis

    A: Isoform numbers of expressed genes and ratio of gene numbers (male relative to female) in gonads of C. semilaevis. B: Number and proportion of splicing events in gonads of C. semilaevis.

    Figure  3.  Number distribution and enriched pathway analysis of genes showing DAS in female and male gonads of C. semilaevis

    A: Pie plot showing proportions of five genes exhibiting DAS events. B: Venn diagram showing intersection of KEGG signaling pathway categories associated with five types of DAS events. C–F: Sashimi plot depicting RNA-Seq and exon junction reads from females and males above gtf2a1, ercc2, stag3, and cdk7 full-length transcripts and gene structure. Arrows indicate direction of gene transcription.

    Figure  4.  Analysis of AS and DEG association in female and male gonads of C. semilaevis

    A: Venn diagram showing overlap between DEGs and AS genes. B: Number of DEGs in which AS occurred and proportion of DEGs showing different AS types in gonads. C: Stacked histograms showing ratio of up- and down-regulated genes and non-DEGs among AS types in gonads. D: Box plots showing average expression levels (log2FPKM) of genes showing five splicing types or no splicing. ns: No significance. ****: P<0.0001.

    Figure  5.  Function and expression analysis of intersecting DAS genes and DEGs

    A: Scatter plots showing DEGs that underwent DAS in gonads, with each dot representing a gene. Density plots above and to the right of scatter plots illustrate distribution of dots. B: Enriched GO terms of differentially expressed DAS genes. Network of enriched terms is colored according to cluster identity. Nodes sharing the same cluster identity are typically close to each other. C: Bar plot showing expression of genes involved in gonadal differentiation (log2FC>0 indicates up-regulated gene in females, log2FC<0 indicates up-regulated gene in males). D, E: RNA-Seq reads, exon junction reads, and RNA-Seq read coverage of esrrb and wt1a. Lower box represents gene structure. Gray box indicates differentially spliced region. Arrows indicate direction of gene transcription.

    Figure  6.  Gene expression and validation of splicing regulators in gonads of C. semilaevis

    A: Expression of splicing regulators in gonads. Heatmap showing relative expression (Z score) of splicing regulators between male and female gonads. B: qRT-PCR validation of gene expression of splicing regulators in gonads. ns: No significance; *: P<0.05; **: P<0.01; ***: P<0.001.

  • [1] Amrein H, Gorman M, Nöthiger R. 1988. The sex-determining gene tra-2 of Drosophila encodes a putative RNA binding protein. Cell, 55(6): 1025−1035. doi: 10.1016/0092-8674(88)90247-4
    [2] Baralle FE, Giudice J. 2017. Alternative splicing as a regulator of development and tissue identity. Nature Reviews Molecular Cell Biology, 18(7): 437−451. doi: 10.1038/nrm.2017.27
    [3] Barberan-Soler S, Zahler AM. 2008. Alternative splicing regulation during C. elegans development: splicing factors as regulated targets. PLoS Genetics, 4(2): e1000001. doi: 10.1371/journal.pgen.1000001
    [4] Bártfai R, Balduf C, Hilton T, Rathmann Y, Hadzhiev Y, Tora L, et al. 2004. TBP2, a vertebrate-specific member of the TBP family, is required in embryonic development of zebrafish. Current Biology, 14(7): 593−598. doi: 10.1016/j.cub.2004.03.034
    [5] Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15): 2114−2120. doi: 10.1093/bioinformatics/btu170
    [6] Bollig F, Mehringer R, Perner B, Hartung C, Schäfer M, Schartl M, et al. 2006. Identification and comparative expression analysis of a second wt1 gene in zebrafish. Developmental Dynamics, 235(2): 554−561. doi: 10.1002/dvdy.20645
    [7] Bourgeois CF, Mortreux F, Auboeuf D. 2016. The multiple functions of RNA helicases as drivers and regulators of gene expression. Nature Reviews Molecular Cell Biology, 17(7): 426−438. doi: 10.1038/nrm.2016.50
    [8] Braunschweig U, Barbosa-Morais NL, Pan Q, Nachman EN, Alipanahi B, Gonatopoulos-Pournatzis T, et al. 2014. Widespread intron retention in mammals functionally tunes transcriptomes. Genome Research, 24(11): 1774−1786. doi: 10.1101/gr.177790.114
    [9] Carreira-Rosario A, Bhargava V, Hillebrand J, Kollipara RK, Ramaswami M, Buszczak M. 2016. Repression of Pumilio protein expression by Rbfox1 promotes germ cell differentiation. Developmental Cell, 36(5): 562−571. doi: 10.1016/j.devcel.2016.02.010
    [10] Cesari E, Loiarro M, Naro C, Pieraccioli M, Farini D, Pellegrini L, et al. 2020. Combinatorial control of Spo11 alternative splicing by modulation of RNA polymerase II dynamics and splicing factor recruitment during meiosis. Cell Death & Disease, 11(4): 240.
    [11] Chen YX, Chen YS, Shi CM, Huang ZB, Zhang Y, Li SK, et al. 2018. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience, 7(1): gix120.
    [12] Clark EL, Coulson A, Dalgliesh C, Rajan P, Nicol SM, Fleming S, et al. 2008. The RNA helicase p68 is a novel androgen receptor coactivator involved in splicing and is overexpressed in prostate cancer. Cancer Research, 68(19): 7938−7946. doi: 10.1158/0008-5472.CAN-08-0932
    [13] Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29(1): 15−21. doi: 10.1093/bioinformatics/bts635
    [14] Festuccia N, Owens N, Navarro P. 2018. Esrrb, an estrogen-related receptor involved in early development, pluripotency, and reprogramming. FEBS Letters, 592(6): 852−877. doi: 10.1002/1873-3468.12826
    [15] Gan Q, Chepelev I, Wei G, Tarayrah L, Cui KR, Zhao KJ, et al. 2010. Dynamic regulation of alternative splicing and chromatin structure in Drosophila gonads revealed by RNA-seq. Cell Research, 20(7): 763−783. doi: 10.1038/cr.2010.64
    [16] Garcia-Cruz R, Brieño MA, Roig I, Grossmann M, Velilla E, Pujol A, et al. 2010. Dynamics of cohesin proteins REC8, STAG3, SMC1β and SMC3 are consistent with a role in sister chromatid cohesion during meiosis in human oocytes. Human Reproduction, 25(9): 2316−2327. doi: 10.1093/humrep/deq180
    [17] Gazdag E, Santenard A, Ziegler-Birling C, Altobelli G, Poch O, Tora L, et al. 2009. TBP2 is essential for germ cell development by regulating transcription and chromatin condensation in the oocyte. Genes & Development, 23(18): 2210−2223.
    [18] Gómez-Redondo I, Planells B, Navarrete P, Gutiérrez-Adán A. 2021. Role of alternative splicing in sex determination in vertebrates. Sexual Development, 15(5-6): 381−391. doi: 10.1159/000519218
    [19] Han F, Wang ZJ, Wu FR, Liu ZH, Huang BF, Wang DS. 2010. Characterization, phylogeny, alternative splicing and expression of Sox30 gene. BMC Molecular Biology, 11(1): 98. doi: 10.1186/1471-2199-11-98
    [20] Isken O, Maquat LE. 2008. The multiple lives of NMD factors: balancing roles in gene and genome regulation. Nature Reviews Genetics, 9(9): 699−712. doi: 10.1038/nrg2402
    [21] Jiang DN, Chen JL, Fan Z, Tan DJ, Zhao JE, Shi HJ, et al. 2017. CRISPR/Cas9-induced disruption of wt1a and wt1b reveals their different roles in kidney and gonad development in Nile tilapia. Developmental Biology, 428(1): 63−73. doi: 10.1016/j.ydbio.2017.05.017
    [22] Kaessmann H. 2010. Origins, evolution, and phenotypic impact of new genes. Genome Research, 20(10): 1313−1326. doi: 10.1101/gr.101386.109
    [23] Kalsotra A, Cooper TA. 2011. Functional consequences of developmentally regulated alternative splicing. Nature Reviews Genetics, 12(10): 715−729. doi: 10.1038/nrg3052
    [24] Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology, 37(8): 907−915. doi: 10.1038/s41587-019-0201-4
    [25] Kim MS, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Chaerkady R, et al. 2014. A draft map of the human proteome. Nature, 509(7502): 575−581. doi: 10.1038/nature13302
    [26] Kohtz JD, Jamison SF, Will CL, Zuo P, Lührmann R, Garcia-Blanco MA, et al. 1994. Protein-protein interactions and 5'-splice-site recognition in mammalian mRNA precursors. Nature, 368(6467): 119−124. doi: 10.1038/368119a0
    [27] Kong XD, Ball Jr AR, Pham HX, Zeng WH, Chen HY, Schmiesing JA, et al. 2014. Distinct functions of human cohesin-SA1 and cohesin-SA2 in double-strand break repair. Molecular and Cellular Biology, 34(4): 685−698. doi: 10.1128/MCB.01503-13
    [28] Kuravsky ML, Aleshin VV, Frishman D, Muronetz VI. 2011. Testis-specific glyceraldehyde-3-phosphate dehydrogenase: origin and evolution. BMC Evolutionary Biology, 11(1): 160. doi: 10.1186/1471-2148-11-160
    [29] Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4): 357−359. doi: 10.1038/nmeth.1923
    [30] Latos PA, Goncalves A, Oxley D, Mohammed H, Turro E, Hemberger M. 2015. Fgf and Esrrb integrate epigenetic and transcriptional networks that regulate self-renewal of trophoblast stem cells. Nature Communications, 6(1): 7776. doi: 10.1038/ncomms8776
    [31] Legrand JMD, Chan AL, La HM, Rossello FJ, Änkö ML, Fuller-Pace FV, et al. 2019. DDX5 plays essential transcriptional and post-transcriptional roles in the maintenance and function of spermatogonia. Nature Communications, 10(1): 2278. doi: 10.1038/s41467-019-09972-7
    [32] Li HL, Xu WT, Zhang N, Shao CW, Zhu Y, Dong ZD, et al. 2016. Two Figla homologues have disparate functions during sex differentiation in half-smooth tongue sole (Cynoglossus semilaevis). Scientific Reports, 6(1): 28219. doi: 10.1038/srep28219
    [33] Liao JY, Suen HC, Luk ACS, Yang LL, Lee AWT, Qi HY, et al. 2021. Transcriptomic and epigenomic profiling of young and aged spermatogonial stem cells reveals molecular targets regulating differentiation. PLoS Genetics, 17(7): e1009369. doi: 10.1371/journal.pgen.1009369
    [34] Licatalosi DD, Darnell RB. 2010. RNA processing and its regulation: global insights into biological networks. Nature Reviews Genetics, 11(1): 75−87. doi: 10.1038/nrg2673
    [35] Liu Y, Chen SL, Gao FT, Meng L, Hu QM, Song WT, et al. 2014. SCAR-transformation of sex-specific SSR marker and its application in half-smooth tongue sole (Cynoglossus semiliaevis). Journal of Agricultural Biotechnology, 22(6): 787−792. (in Chinese)
    [36] Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12): 550. doi: 10.1186/s13059-014-0550-8
    [37] Luo JM, Sladek R, Bader JA, Matthyssen A, Rossant J, Giguère V. 1997. Placental abnormalities in mouse embryos lacking the orphan nuclear receptor ERR-β. Nature, 388(6644): 778−782. doi: 10.1038/42022
    [38] Mitsunaga K, Araki K, Mizusaki H, Morohashi KI, Haruna K, Nakagata N, et al. 2004. Loss of PGC-specific expression of the orphan nuclear receptor ERR-β results in reduction of germ cell number in mouse embryos. Mechanisms of Development, 121(3): 237−246. doi: 10.1016/j.mod.2004.01.006
    [39] Morrison AA, Venables JP, Dellaire G, Ladomery MR. 2006. The Wilms tumour suppressor protein WT1 (+KTS isoform) binds alpha-actinin 1 mRNA via its zinc-finger domain. Biochemistry and Cell Biology, 84(5): 789−798. doi: 10.1139/o06-065
    [40] Naro C, Jolly A, Di Persio S, Bielli P, Setterblad N, Alberdi AJ, et al. 2017. An orchestrated intron retention program in meiosis controls timely usage of transcripts during germ cell differentiation. Developmental Cell, 41(1): 82−93.e4. doi: 10.1016/j.devcel.2017.03.003
    [41] Nasmyth K, Peters J-M, Uhlmann F. 2000. Splitting the chromosome: cutting the ties that bind sister chromatids. Science, 288(5470): 1379−1384. doi: 10.1126/science.288.5470.1379
    [42] Natraj U, Richards JS. 1993. Hormonal regulation, localization, and functional activity of the progesterone receptor in granulosa cells of rat preovulatory follicles. Endocrinology, 133(2): 761−769. doi: 10.1210/endo.133.2.8344215
    [43] Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. 2008. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nature Genetics, 40(12): 1413−1415. doi: 10.1038/ng.259
    [44] Perner B, Englert C, Bollig F. 2007. The Wilms tumor genes wt1a and wt1b control different steps during formation of the zebrafish pronephros. Developmental Biology, 309(1): 87−96. doi: 10.1016/j.ydbio.2007.06.022
    [45] Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. 2011. Integrative genomics viewer. Nature Biotechnology, 29(1): 24−26. doi: 10.1038/nbt.1754
    [46] Samaan S, Tranchevent LC, Dardenne E, Polay Espinoza M, Zonta E, Germann S, et al. 2014. The Ddx5 and Ddx17 RNA helicases are cornerstones in the complex regulatory array of steroid hormone-signaling pathways. Nucleic Acids Research, 42(4): 2197−2207. doi: 10.1093/nar/gkt1216
    [47] Shen SH, Park JW, Lu ZX, Lin L, Henry MD, Wu YN, et al. 2014. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proceedings of the National Academy of Sciences of the United States of America, 111(51): E5593−E5601.
    [48] Shiekhattar R, Mermelstein F, Fisher RP, Drapkin R, Dynlacht B, Wessling HC, et al. 1995. Cdk-activating kinase complex is a component of human transcription factor TFIIH. Nature, 374(6519): 283−287. doi: 10.1038/374283a0
    [49] Shiraishi E, Imazato H, Yamamoto T, Yokoi H, Abe SI, Kitano T. 2004. Identification of two teleost homologs of the Drosophila sex determination factor, transformer-2 in medaka (Oryzias latipes). Mechanisms of Development, 121(7-8): 991−996. doi: 10.1016/j.mod.2004.04.013
    [50] Smolen GA, Vassileva MT, Wells J, Matunis MJ, Haber DA. 2004. SUMO-1 modification of the Wilms' tumor suppressor WT1. Cancer Research, 64(21): 7846−7851. doi: 10.1158/0008-5472.CAN-04-1502
    [51] Sone R, Taimatsu K, Ohga R, Nishimura T, Tanaka M, Kawahara A. 2020. Critical roles of the ddx5 gene in zebrafish sex differentiation and oocyte maturation. Scientific Reports, 10(1): 14157. doi: 10.1038/s41598-020-71143-2
    [52] Soumillon M, Necsulea A, Weier M, Brawand D, Zhang XL, Gu HC, et al. 2013. Cellular source and mechanisms of high transcriptome complexity in the mammalian testis. Cell Reports, 3(6): 2179−2190. doi: 10.1016/j.celrep.2013.05.031
    [53] Tremblay AM, Giguère V. 2007. The NR3B subgroup: an overrview. Nuclear Receptor Signaling, 5(1): nrs.05009. doi: 10.1621/nrs.05009
    [54] Wang YB, Jin SB, Fu HT, Qiao H, Sun SM, Zhang WY, et al. 2019. Molecular cloning, expression pattern analysis, and in situ hybridization of a Transformer-2 gene in the oriental freshwater prawn, Macrobrachium nipponense (de Haan, 1849). 3 Biotech, 9(6): 205. doi: 10.1007/s13205-019-1737-1
    [55] Wang ZK, Gao JN, Song HY, Wu XM, Sun Y, Qi J, et al. 2014. Sexually dimorphic expression of vasa isoforms in the tongue sole (Cynoglossus semilaevis). PLoS One, 9(3): e93380. doi: 10.1371/journal.pone.0093380
    [56] Witten JT, Ule J. 2011. Understanding splicing regulation through RNA splicing maps. Trends in Genetics, 27(3): 89−97. doi: 10.1016/j.tig.2010.12.001
    [57] Yu CW, Cvetesic N, Hisler V, Gupta K, Ye T, Gazdag E, et al. 2020. TBPL2/TFIIA complex establishes the maternal transcriptome through oocyte-specific promoter usage. Nature Communications, 11(1): 6439. doi: 10.1038/s41467-020-20239-4
    [58] Yu LP, Zhang HR, Guan XB, Qin DD, Zhou J, Wu X. 2021. Loss of ESRP1 blocks mouse oocyte development and leads to female infertility. Development, 148(2): dev196931.
    [59] Zapater C, Chauvigné F, Fernández-Gómez B, Finn RN, Cerdà J. 2013. Alternative splicing of the nuclear progestin receptor in a perciform teleost generates novel mechanisms of dominant-negative transcriptional regulation. General and Comparative Endocrinology, 182: 24−40. doi: 10.1016/j.ygcen.2012.11.015
  • 加载中
图(6)
计量
  • 文章访问数:  1558
  • HTML全文浏览量:  703
  • PDF下载量:  285
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-27
  • 录用日期:  2022-03-17
  • 网络出版日期:  2022-03-17
  • 刊出日期:  2022-05-18

目录

    /

    返回文章
    返回