留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cenozoic Tethyan changes dominated Eurasian animal evolution and diversity patterns

Zhe Zhao Zhong-E Hou Shu-Qiang Li

Zhe Zhao, Zhong-E Hou, Shu-Qiang Li. Cenozoic Tethyan changes dominated Eurasian animal evolution and diversity patterns. Zoological Research, 2022, 43(1): 3-13. doi: 10.24272/j.issn.2095-8137.2021.322
Citation: Zhe Zhao, Zhong-E Hou, Shu-Qiang Li. Cenozoic Tethyan changes dominated Eurasian animal evolution and diversity patterns. Zoological Research, 2022, 43(1): 3-13. doi: 10.24272/j.issn.2095-8137.2021.322

新生代特提斯海变迁主导了欧亚动物的进化和多样性格局

doi: 10.24272/j.issn.2095-8137.2021.322

Cenozoic Tethyan changes dominated Eurasian animal evolution and diversity patterns

Funds: This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31000000), National Natural Sciences Foundation of China (32170447), and program of Youth Innovation Promotion Association of Chinese Academy of Sciences (2019087)
More Information
  • 摘要: 特提斯海区域新生代以来的构造演化极大地改变了欧亚地区的地貌和环境,推动了欧亚地区的动物演化,并深刻影响了欧亚地区的动物多样性格局。该文通过结合最新的特提斯海区域古地理模型,对近期发表的一系列欧亚地区动物学研究进行系统回顾和总结,详细论述了特提斯海区域新生代以来的构造演化是如何影响欧亚地区动物的演化及多样性格局的:大陆板块的汇聚、特提斯海的闭合以及特提斯海区域海平面变化直接影响了欧亚地区的动物多样性组成和空间分布;海陆变迁引起的区域地理和环境变化,对当地动物的起源、扩散、存留、多样化和灭绝产生了一系列影响,进而决定了欧亚动物的区域多样性格局;生态环境的变化导致了新栖息地和新生态位的出现,促进了欧亚动物的适应性进化、特化、物种形成和扩张。我们强调了特提斯海区域新生代构造演化是欧亚动物分布变化的主要原因,也是驱动欧亚动物演化的重要力量。此外,我们提出了特提斯地质事件与欧亚动物演化和多样性动态相关的一般模式。
  • Figure  1.  The Tethyan tectonic domain and the impacts of Eurasian sea-land changes on animal diversity patterns

    Figure  2.  A general pattern that Tethyan geological events impact Eurasian animal evolution and diversity dynamics

  • [1] Ballarin F, Li SQ. 2018. Diversification in tropics and subtropics following the mid-Miocene climate change: a case study of the spider genus Nesticella. Global Change Biology, 24(2): e577–e591.
    [2] Barrier E, Vrielynck B, Brouillet JF, Brunet MF. 2018. Paleotectonic reconstruction of the central Tethyan Realm. Tectonono-sedimentary-palinspastic maps from late Permian to Pliocene. Paris: Commission for the Geological Map of the World.
    [3] Bellwood DR, Goatley CHR, Bellwood O. 2017. The evolution of fishes and corals on reefs: form, function and interdependence. Biological Reviews, 92(2): 878−901. doi: 10.1111/brv.12259
    [4] Borko Š, Trontelj P, Seehausen O, Moškrič A, Fišer C. 2021. A subterranean adaptive radiation of amphipods in Europe. Nature Communications, 12: 3688. doi: 10.1038/s41467-021-24023-w
    [5] Bosboom RE, Dupont-Nivet G, Houben AJP, Brinkhuis H, Villa G, Mandic O, et al. 2011. Late Eocene sea retreat from the Tarim Basin (west China) and concomitant Asian paleoenvironmental change. Palaeogeography, Palaeoclimatology, Palaeoecology, 299(3–4): 385–398.
    [6] Briggs JC. 2003. The biogeographic and tectonic history of India. Journal of Biogeography, 30(3): 381−388. doi: 10.1046/j.1365-2699.2003.00809.x
    [7] Cai TL, Fjeldså J, Wu YJ, Shao SM, Chen YH, Quan Q, et al. 2018. What makes the Sino-Himalayan mountains the major diversity hotspots for pheasants?. Journal of Biogeography, 45(3): 640−651. doi: 10.1111/jbi.13156
    [8] Carrapa B, DeCelles PG, Wang X, Clementz MT, Mancin N, Stoica M, et al. 2015. Tectono-climatic implications of Eocene Paratethys regression in the Tajik basin of central Asia. Earth and Planetary Science Letters, 424: 168−178. doi: 10.1016/j.jpgl.2015.05.034
    [9] Chang M, Wang XM, Liu HZ, Miao DS, Zhao QH, Wu GX, et al. 2008. Extraordinarily thick-boned fish linked to the aridification of the Qaidam Basin (northern Tibetan Plateau). Proceedings of the National Academy of Sciences of the United States of America, 105(36): 13246−13251. doi: 10.1073/pnas.0805982105
    [10] Chatterjee S, Goswami A, Scotese CR. 2013. The longest voyage: tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. Gondwana Research, 23(1): 238−267. doi: 10.1016/j.gr.2012.07.001
    [11] Clements R, Sodhi NS, Schilthuizen M, Ng PKL. 2006. Limestone karsts of Southeast Asia: imperiled arks of biodiversity. BioScience, 56(9): 733−742. doi: 10.1641/0006-3568(2006)56[733:LKOSAI]2.0.CO;2
    [12] Cowman PF, Bellwood DR. 2013. Vicariance across major marine biogeographic barriers: temporal concordance and the relative intensity of hard versus soft barriers. Proceedings of the Royal Society B:Biological Sciences, 280(1768): 20131541. doi: 10.1098/rspb.2013.1541
    [13] Cui ZJ, Gao QZ, Liu GN, Pan BT, Chen HL. 1996. Planation surfaces, palaeokarst and uplift of Xizang (Tibet) Plateau. Science in China (Series D), 39(4): 391–400, 449.
    [14] Delić T, Stoch F, Borko Š, Flot JF, Fišer C. 2020. How did subterranean amphipods cross the Adriatic Sea? Phylogenetic evidence for dispersal–vicariance interplay mediated by marine regression–transgression cycles. Journal of Biogeography, 47(9): 1875−1887. doi: 10.1111/jbi.13875
    [15] Deng T, Wang XM, Fortelius M, Li Q, Wang Y, Tseng ZJ, et al. 2011. Out of Tibet: Pliocene woolly rhino suggests high-plateau origin of Ice Age megaherbivores. Science, 333(6047): 1285−1288. doi: 10.1126/science.1206594
    [16] Deng T, Wu FX, Zhou ZK, Su T. 2020. Tibetan Plateau: an evolutionary junction for the history of modern biodiversity. Science China Earth Sciences, 63(2): 172−187. doi: 10.1007/s11430-019-9507-5
    [17] Dercourt J, Gaetani M, Vrielynck B, Barrier E, Biju-Duval B, Brunet MF, et al. 2000. Atlas peri-Tethys. Palaeogeographic maps: 24 maps and explanatory notes. Paris: Commission for the Geological Map of the World.
    [18] Duggen S, Hoernle K, van den Bogaard P, Rüpke L, Morgan JP. 2003. Deep roots of the Messinian salinity crisis. Nature, 422(6932): 602−606. doi: 10.1038/nature01553
    [19] Esmaeili-Rineh S, Sari A, Delić T, Moškrič A, Fišer C. 2015. Molecular phylogeny of the subterranean genus Niphargus (Crustacea: Amphipoda) in the Middle East: a comparison with European Niphargids. Zoological Journal of the Linnean Society, 175(4): 812−826. doi: 10.1111/zoj.12296
    [20] Esselstyn JA, Brown RM. 2009. The role of repeated sea-level fluctuations in the generation of shrew (Soricidae: Crocidura) diversity in the Philippine Archipelago. Molecular Phylogenetics and Evolution, 53(1): 171−181. doi: 10.1016/j.ympev.2009.05.034
    [21] Frey MA, Vermeij GJ. 2008. Molecular phylogenies and historical biogeography of a circumtropical group of gastropods (Genus: Nerita): implications for regional diversity patterns in the marine tropics. Molecular Phylogenetics and Evolution, 48(3): 1067−1086. doi: 10.1016/j.ympev.2008.05.009
    [22] Garcia-Castellanos D, Estrada F, Jiménez-Munt I, Gorini C, Fernàndez M, Vergés J, et al. 2009. Catastrophic flood of the Mediterranean after the Messinian salinity crisis. Nature, 462(7274): 778−781. doi: 10.1038/nature08555
    [23] Garcia-Castellanos D, Villaseñor A. 2011. Messinian salinity crisis regulated by competing tectonics and erosion at the Gibraltar arc. Nature, 480(7377): 359−363. doi: 10.1038/nature10651
    [24] Ge DY, Feijó A, Wen ZX, Abramov AV, Lu L, Cheng JL, et al. 2021. Demographic history and genomic response to environmental changes in a rapid radiation of wild rats. Molecular Biology and Evolution, 38(5): 1905−1923. doi: 10.1093/molbev/msaa334
    [25] Grismer JL, Schulte II JA, Alexander A, Wagner P, Travers SL, Buehler MD, et al. 2016. The Eurasian invasion: phylogenomic data reveal multiple Southeast Asian origins for Indian Dragon Lizards. BMC Evolutionary Biology, 16: 43. doi: 10.1186/s12862-016-0611-6
    [26] Guo XG, Dai X, Chen DL, Papenfuss TJ, Ananjeva NB, Melnikov DA, et al. 2011. Phylogeny and divergence times of some racerunner lizards (Lacertidae: Eremias) inferred from mitochondrial 16S rRNA gene segments. Molecular Phylogenetics and Evolution, 61(2): 400−412. doi: 10.1016/j.ympev.2011.06.022
    [27] Hamon N, Sepulchre P, Lefebvre V, Ramstein G. 2013. The role of eastern Tethys seaway closure in the Middle Miocene Climatic Transition (ca. 14 Ma). Climate of the Past, 9(6): 2687−2702. doi: 10.5194/cp-9-2687-2013
    [28] Hanebuth TJJ, Voris HK, Yokoyama Y, Saito Y, Okuno J. 2011. Formation and fate of sedimentary depocentres on Southeast Asia's Sunda Shelf over the past sea-level cycle and biogeographic implications. Earth-Science Reviews, 104(1–3): 92–110.
    [29] Hänfling B, Dümpelmann C, Bogutskaya NG, Brandl R, Brändle M. 2009. Shallow phylogeographic structuring of Vimba vimba across Europe suggests two distinct refugia during the last glaciation. Journal of Fish Biology, 75(9): 2269−2286. doi: 10.1111/j.1095-8649.2009.02415.x
    [30] Harzhauser M, Kroh A, Mandic O, Piller WE, Göhlich U, Reuter M, et al. 2007. Biogeographic responses to geodynamics: a key study all around the Oligo-Miocene Tethyan Seaway. Zoologischer Anzeiger - A Journal of Comparative Zoology, 246(4): 241−256. doi: 10.1016/j.jcz.2007.05.001
    [31] Harzhauser M, Mandic O. 2008. Neogene lake systems of Central and South-Eastern Europe: faunal diversity, gradients and interrelations. Palaeogeography, Palaeoclimatology, Palaeoecology, 260(3–4): 417–434.
    [32] Harzhauser M, Piller WE. 2007. Benchmark data of a changing sea—Palaeogeography, Palaeobiogeography and events in the Central Paratethys during the Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 253(1–2): 8–31.
    [33] He K, Jiang XL. 2014. Sky Islands of southwest China. I: an overview of phylogeographic patterns. Chinese Science Bulletin, 59(7): 585−597. doi: 10.1007/s11434-013-0089-1
    [34] Hewitt G. 2000. The genetic legacy of the Quaternary ice ages. Nature, 405(6789): 907−913. doi: 10.1038/35016000
    [35] Hidalgo-Galiana A, Sánchez-Fernández D, Bilton DT, Cieslak A, Ribera I. 2014. Thermal niche evolution and geographical range expansion in a species complex of western Mediterranean diving beetles. BMC Evolutionary Biology, 14: 187. doi: 10.1186/s12862-014-0187-y
    [36] Hou ZE, Fu JZ, Li SQ. 2007. A molecular phylogeny of the genus Gammarus (Crustacea: Amphipoda) based on mitochondrial and nuclear gene sequences. Molecular Phylogenetics and Evolution, 45(2): 596−611. doi: 10.1016/j.ympev.2007.06.006
    [37] Hou ZE, Li JB, Li SQ. 2013. Ten new Gammarus species (Crustacea: Amphipoda: Gammaridae) from Yunnan-Guizhou Plateau, China. Zootaxa, 3687(1): 1−95. doi: 10.11646/zootaxa.3687.1.1
    [38] Hou ZE, Li SQ. 2018. Tethyan changes shaped aquatic diversification. Biological Reviews, 93(2): 874−896. doi: 10.1111/brv.12376
    [39] Hou ZE, Sket B. 2016. A review of Gammaridae (Crustacea: Amphipoda): the family extent, its evolutionary history, and taxonomic redefinition of genera. Zoological Journal of the Linnean Society, 176(2): 323−348. doi: 10.1111/zoj.12318
    [40] Hou ZE, Sket B, Fišer C, Li SQ. 2011. Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. Proceedings of the National Academy of Sciences of the United States of America, 108(35): 14533−14538. doi: 10.1073/pnas.1104636108
    [41] Hrbek T, Meyer A. 2003. Closing of the Tethys Sea and the phylogeny of Eurasian killifishes (Cyprinodontiformes: Cyprinodontidae). Journal of Evolutionary Biology, 16(1): 17−36. doi: 10.1046/j.1420-9101.2003.00475.x
    [42] Huyse T, Van Houdt J, Volckaert FAM. 2004. Paleoclimatic history and vicariant speciation in the “sand goby” group (Gobiidae, Teleostei). Molecular Phylogenetics and Evolution, 32(1): 324−336. doi: 10.1016/j.ympev.2003.11.007
    [43] Inger RF, Voris HK. 2001. The biogeographical relations of the frogs and snakes of Sundaland. Journal of Biogeography, 28(7): 863−891.
    [44] Jaume D. 2008. Global diversity of spelaeogriphaceans & thermosbaenaceans (Crustacea; Spelaeogriphacea & Thermosbaenacea) in freshwater. Hydrobiologia, 595(1): 219−224. doi: 10.1007/s10750-007-9017-1
    [45] Jesse R, Grudinski M, Klaus S, Streit B, Pfenninger M. 2011. Evolution of freshwater crab diversity in the Aegean region (Crustacea: Brachyura: Potamidae). Molecular Phylogenetics and Evolution, 59(1): 23−33. doi: 10.1016/j.ympev.2010.12.011
    [46] Jurado-Rivera JA, Pons J, Alvarez F, Botello A, Humphreys WF, Page TJ, et al. 2017. Phylogenetic evidence that both ancient vicariance and dispersal have contributed to the biogeographic patterns of anchialine cave shrimps. Scientific Reports, 7: 2852. doi: 10.1038/s41598-017-03107-y
    [47] Kappelman J, Rasmussen DT, Sanders WJ, Feseha M, Bown T, Copeland P, et al. 2003. Oligocene mammals from Ethiopia and faunal exchange between Afro-Arabia and Eurasia. Nature, 426(6966): 549−552. doi: 10.1038/nature02102
    [48] Klaus S, Morley RJ, Plath M, Zhang YP, Li JT. 2016. Biotic interchange between the Indian subcontinent and mainland Asia through time. Nature Communications, 7: 12132. doi: 10.1038/ncomms12132
    [49] Krehenwinkel H, Graze M, Rödder D, Tanaka K, Baba YG, Muster C, et al. 2016. A phylogeographical survey of a highly dispersive spider reveals eastern Asia as a major glacial refugium for Palaearctic fauna. Journal of Biogeography, 43(8): 1583−1594. doi: 10.1111/jbi.12742
    [50] Krosch MN, Schutze MK, Armstrong KF, Graham GC, Yeates DK, Clarke AR. 2012. A molecular phylogeny for the Tribe Dacini (Diptera: Tephritidae): systematic and biogeographic implications. Molecular Phylogenetics and Evolution, 64(3): 513−523. doi: 10.1016/j.ympev.2012.05.006
    [51] Leneveu J, Chichvarkhin A, Wahlberg N. 2009. Varying rates of diversification in the genus Melitaea (Lepidoptera: Nymphalidae) during the past 20 million years. Biological Journal of the Linnean Society, 97(2): 346−361. doi: 10.1111/j.1095-8312.2009.01208.x
    [52] Leprieur F, Descombes P, Gaboriau T, Cowman PF, Parravicini V, Kulbicki M, et al. 2016. Plate tectonics drive tropical reef biodiversity dynamics. Nature Communications, 7: 11461. doi: 10.1038/ncomms11461
    [53] Li B, Zhao Z, Zhang CT, Li SQ. 2019. Troglocoelotes gen. n., a new genus of Coelotinae spiders (Araneae, Agelenidae) from caves in South China. Zootaxa, 4554(1): 219−238. doi: 10.11646/zootaxa.4554.1.7
    [54] Li CY, Olave M, Hou YL, Qin G, Schneider RF, Gao ZX, et al. 2021. Genome sequences reveal global dispersal routes and suggest convergent genetic adaptations in seahorse evolution. Nature Communications, 12: 1094. doi: 10.1038/s41467-021-21379-x
    [55] Li FY, Li SQ. 2018. Paleocene–Eocene and Plio–Pleistocene sea-level changes as “species pumps” in Southeast Asia: evidence from Althepus spiders. Molecular Phylogenetics and Evolution, 127: 545−555. doi: 10.1016/j.ympev.2018.05.014
    [56] Li FY, Shao LL, Li SQ. 2020. Tropical niche conservatism explains the Eocene migration from India to Southeast Asia in ochyroceratid spiders. Systematic Biology, 69(5): 987−998. doi: 10.1093/sysbio/syaa006
    [57] Li JT, Li Y, Klaus S, Rao DQ, Hillis DM, Zhang YP. 2013. Diversification of Rhacophorid frogs provides evidence for accelerated faunal exchange between India and Eurasia during the Oligocene. Proceedings of the National Academy of Sciences of the United States of America, 110(9): 3441−3446. doi: 10.1073/pnas.1300881110
    [58] Liu HG, Li SQ, Ugolini A, Momtazi F, Hou ZE. 2018. Tethyan closure drove tropical marine biodiversity: vicariant diversification of intertidal crustaceans. Journal of Biogeography, 45(4): 941−951. doi: 10.1111/jbi.13183
    [59] Lohman DJ, de Bruyn M, Page T, von Rintelen K, Hall R, Ng PKL, et al. 2011. Biogeography of the Indo-Australian archipelago. Annual Review of Ecology, Evolution, and Systematics, 42: 205−226. doi: 10.1146/annurev-ecolsys-102710-145001
    [60] Lukeneder S, Zuschin M, Harzhauser M, Mandic O. 2011. Spatiotemporal signals and palaeoenvironments of endemic molluscan assemblages in the marine system of the Sarmatian Paratethys. Acta Palaeontologica Polonica, 56(4): 767−784. doi: 10.4202/app.2010.0046
    [61] Luo SJ, Zhang Y, Johnson WE, Miao L, Martelli P, Antunes A, et al. 2014. Sympatric Asian felid phylogeography reveals a major Indochinese-Sundaic divergence. Molecular Ecology, 23(8): 2072−2092. doi: 10.1111/mec.12716
    [62] Luo YF, Li SQ. 2018. Cave Stedocys spitting spiders illuminate the history of the Himalayas and southeast Asia. Ecography, 41(2): 414−423. doi: 10.1111/ecog.02908
    [63] Malaquias MAE, Reid DG. 2009. Tethyan vicariance, relictualism and speciation: evidence from a global molecular phylogeny of the opisthobranch genus Bulla. Journal of Biogeography, 36(9): 1760–1777.
    [64] Mamos T, Wattier R, Burzyński A, Grabowski M. 2016. The legacy of a vanished sea: a high level of diversification within a European freshwater amphipod species complex driven by 15 My of Paratethys regression. Molecular Ecology, 25(3): 795−810. doi: 10.1111/mec.13499
    [65] Manafzadeh S, Staedler YM, Conti E. 2017. Visions of the past and dreams of the future in the Orient: the Irano-Turanian region from classical botany to evolutionary studies. Biological Reviews, 92(3): 1365−1388. doi: 10.1111/brv.12287
    [66] Meynard CN, Mouillot D, Mouquet N, Douzery EJP. 2012. A phylogenetic perspective on the evolution of Mediterranean teleost fishes. PLoS One, 7(5): e36443. doi: 10.1371/journal.pone.0036443
    [67] Miao YF, Herrmann M, Wu FL, Yan XL, Yang SL. 2012. What controlled Mid-Late Miocene long-term aridification in central Asia?—Global cooling or Tibetan Plateau uplift: a review. Earth-Science Reviews, 112(3–4): 155–172.
    [68] Miller KG, Kominz MA, Browning JV, Wright JD, Mountain GS, Katz ME, et al. 2005. The Phanerozoic record of global sea-level change. Science, 310(5752): 1293−1298. doi: 10.1126/science.1116412
    [69] Mittermeier RA, Turner WR, Larsen FW, Brooks TM, Gascon C. 2011. Global biodiversity conservation: the critical role of hotspots. In: Zachos FE, Habel JC. Biodiversity Hotspots: Distribution and Protection of Conservation Priority Areas. Berlin, Heidelberg: Springer, 3–22.
    [70] Neubauer TA, Harzhauser M, Georgopoulou E, Kroh A, Mandic O. 2015. Tectonics, climate, and the rise and demise of continental aquatic species richness hotspots. Proceedings of the National Academy of Sciences of the United States of America, 112(37): 11478−11483. doi: 10.1073/pnas.1503992112
    [71] Newton CR. 1988. Significance of "Tethyan" fossils in the American Cordillera. Science, 242(4877): 385−391. doi: 10.1126/science.242.4877.385
    [72] Nikulina EA, Hanel R, Schäfer P. 2007. Cryptic speciation and paraphyly in the cosmopolitan bryozoan Electra pilosa—impact of the Tethys closing on species evolution. Molecular Phylogenetics and Evolution, 45(3): 765−776. doi: 10.1016/j.ympev.2007.07.016
    [73] Page TJ, Humphreys WF, Hughes JM. 2008. Shrimps down under: evolutionary relationships of subterranean crustaceans from Western Australia (Decapoda: Atyidae: Stygiocaris). PLoS One, 3(2): e1618. doi: 10.1371/journal.pone.0001618
    [74] Patarnello T, Volckaert FAMJ, Castilho R. 2007. Pillars of Hercules: is the Atlantic-Mediterranean transition a phylogeographical break?. Molecular Ecology, 16(21): 4426−4444. doi: 10.1111/j.1365-294X.2007.03477.x
    [75] Popov SV, Rögl F, Rozanov AY, Steininger FF, Shcherba IG, Kovac M. 2004. Lithological-Paleogeographic maps of Paratethys 10 maps Late Eocene to Pliocene. Stuttgart: Schweizerbart Science Publishers, 1–46.
    [76] Price TD, Hooper DM, Buchanan CD, Johansson US, Tietze DT, Alström P, et al. 2014. Niche filling slows the diversification of Himalayan songbirds. Nature, 509(7499): 222−225. doi: 10.1038/nature13272
    [77] Provan J, Bennett KD. 2008. Phylogeographic insights into cryptic glacial refugia. Trends in Ecology & Evolution, 23(10): 564−571.
    [78] Ran JC, Yang WC. 2015. A review of progress in Chinese troglofauna research. Journal of Resources and Ecology, 6(4): 237−246. doi: 10.5814/j.issn.1674-764x.2015.04.007
    [79] Renema W, Bellwood DR, Braga JC, Bromfield K, Hall R, Johnson KG, et al. 2008. Hopping hotspots: global shifts in marine biodiversity. Science, 321(5889): 654−657. doi: 10.1126/science.1155674
    [80] Reyjol Y, Hugueny B, Pont D, Bianco PG, Beier U, Caiola N, et al. 2007. Patterns in species richness and endemism of European freshwater fish. Global Ecology and Biogeography, 16(1): 65−75. doi: 10.1111/j.1466-8238.2006.00264.x
    [81] Rodríguez-Flores PC, Buckley D, Macpherson E, Corbari L, Machordom A. 2020. Deep-sea squat lobster biogeography (Munidopsidae: Leiogalathea) unveils Tethyan vicariance and evolutionary patterns shared by shallow-water relatives. Zoologica Scripta, 49(3): 340−356. doi: 10.1111/zsc.12414
    [82] Rosenbaum G, Lister GS. 2002. Reconstruction of the evolution of the Alpine-Himalayan Orogen - an introduction. Journal of the Virtual Explorer, 8: 1−2.
    [83] Roveri M, Flecker R, Krijgsman W, Lofi J, Lugli S, Manzi V, et al. 2014. The Messinian Salinity Crisis: past and future of a great challenge for marine sciences. Marine Geology, 352: 25−58. doi: 10.1016/j.margeo.2014.02.002
    [84] Rüber L, Britz R, Kullander SO, Zardoya R. 2004. Evolutionary and biogeographic patterns of the Badidae (Teleostei: Perciformes) inferred from mitochondrial and nuclear DNA sequence data. Molecular Phylogenetics and Evolution, 32(3): 1010−1022. doi: 10.1016/j.ympev.2004.04.020
    [85] Sidorov D, Taylor SJ, Sharina S, Gontcharov A. 2018. Zenkevitchiidae fam. Nov. (Crustacea: Gammaroidea), with description of new subterranean amphipods from extremely deep cave habitats. Journal of Natural History, 52(23–24): 1509–1535.
    [86] Sket B. 2018. Subterranean (Hypogean) habitats in karst and their fauna. In: Finlayson CM, Milton GR, Prentice RC, Davidson NC. The Wetland Book: II: Distribution, Description, and Conservation. Dordrecht: Springer, 331–344.
    [87] Solà E, Sluys R, Gritzalis K, Riutort M. 2013. Fluvial basin history in the northeastern Mediterranean region underlies dispersal and speciation patterns in the genus Dugesia (Platyhelminthes, Tricladida, Dugesiidae). Molecular Phylogenetics and Evolution, 66(3): 877−888. doi: 10.1016/j.ympev.2012.11.010
    [88] Spicer RA. 2017. Tibet, the Himalaya, Asian monsoons and biodiversity - In what ways are they related?. Plant Diversity, 39(5): 233−244. doi: 10.1016/j.pld.2017.09.001
    [89] Steinbauer MJ, Field R, Grytnes JA, Trigas P, Ah-Peng C, Attorre F, et al. 2016. Topography-driven isolation, speciation and a global increase of endemism with elevation. Global Ecology and Biogeography, 25(9): 1097−1107. doi: 10.1111/geb.12469
    [90] Stow D. 2010. Vanished Ocean: How Tethys Reshaped the World. Oxford: Oxford University Press.
    [91] Studencka B, Jasionowski M. 2011. Bivalves from the Middle Miocene reefs of Poland and Ukraine: a new approach to Badenian/Sarmatian boundary in the Paratethys. Acta Geologica Polonica, 61(1): 79−114.
    [92] Suess E. 1893. Are great ocean depths permanent?. Natural Science, 2: 180−187.
    [93] Sun JM, Jiang MS. 2013. Eocene seawater retreat from the southwest Tarim Basin and implications for early Cenozoic tectonic evolution in the Pamir Plateau. Tectonophysics, 588: 27−38. doi: 10.1016/j.tecto.2012.11.031
    [94] Trontelj P, Blejec A, Fišer C. 2012. Ecomorphological convergence of cave communities. Evolution, 66(12): 3852−3865. doi: 10.1111/j.1558-5646.2012.01734.x
    [95] Uribe JE, Williams ST, Templado J, Buge B, Zardoya R. 2017. Phylogenetic relationships of Mediterranean and north-east Atlantic Cantharidinae and notes on Stomatellinae (Vetigastropoda: Trochidae). Molecular Phylogenetics and Evolution, 107: 64−79. doi: 10.1016/j.ympev.2016.10.009
    [96] Väinölä R, Vainio JK, Palo JU. 2001. Phylogeography of “glacial relict” Gammaracanthus (Crustacea, Amphipoda) from boreal lakes and the Caspian and White seas. Canadian Journal of Fisheries and Aquatic Sciences, 58(11): 2247−2257. doi: 10.1139/f01-165
    [97] Wallis GP, Waters JM, Upton P, Craw D. 2016. Transverse alpine speciation driven by glaciation. Trends in Ecology & Evolution, 31(12): 916−926.
    [98] Wang CX, Xu X, Li SQ. 2017. Integrative taxonomy of Leptonetela spiders (Araneae, Leptonetidae), with descriptions of 46 new species. Zoological Research, 38(6): 321−448. doi: 10.24272/j.issn.2095-8137.2017.076
    [99] Wang WJ, McKay BD, Dai CY, Zhao N, Zhang RY, Qu YH, et al. 2013. Glacial expansion and diversification of an East Asian montane bird, the green-backed tit (Parus monticolus). Journal of Biogeography, 40(6): 1156−1169. doi: 10.1111/jbi.12055
    [100] Wang XM, Tseng ZJ, Li Q, Takeuchi GT, Xie GP. 2014. From ‘third pole’ to north pole: a Himalayan origin for the arctic fox. Proceedings of the Royal Society B:Biological Sciences, 281(1787): 20140893. doi: 10.1098/rspb.2014.0893
    [101] Wang XM, Wang Y, Li Q, Tseng ZJ, Takeuchi GT, Deng T, et al. 2015. Cenozoic vertebrate evolution and paleoenvironment in Tibetan Plateau: progress and prospects. Gondwana Research, 27(4): 1335−1354. doi: 10.1016/j.gr.2014.10.014
    [102] Wang XY, Liang D, Jin W, Tang MK, Shalayiwu, Liu SY, et al. 2020. Out of Tibet: genomic perspectives on the evolutionary history of extant pikas. Molecular Biology and Evolution, 37(6): 1577−1592. doi: 10.1093/molbev/msaa026
    [103] Wilke T. 2003. Salenthydrobia gen. nov. (Rissooidea: Hydrobiidae): a potential relict of the Messinian salinity crisis. Zoological Journal of the Linnean Society, 137(2): 319−336. doi: 10.1046/j.1096-3642.2003.00049.x
    [104] Xiong KN. 1996. Development of cone karst in response to Neotectonism in Guizhou. Guzhou Geology, 13(2): 181−186. (in Chinese)
    [105] Xu W, Dong WJ, Fu TT, Gao W, Lu CQ, Yan F, et al. 2020. Herpetological phylogeographic analyses support a Miocene focal point of Himalayan uplift and biological diversification. National Science Review, 8(9): nwaa263.
    [106] Yamaguchi T, Mashiba H, Kamiya T. 2012. Miocene Ostracodes from the Osaki formation, Kukinaga group, Tanegashima, Southwest Japan, and their significance for the biogeography of the Indo-West Pacific. Paleontological Research, 16(2): 107−123. doi: 10.2517/1342-8144-16.2.107
    [107] Yamanoue Y, Miya M, Doi H, Mabuchi K, Sakai H, Nishida M. 2011. Multiple invasions into freshwater by pufferfishes (Teleostei: Tetraodontidae): a mitogenomic perspective. PLoS One, 6(2): e17410. doi: 10.1371/journal.pone.0017410
    [108] Yao ZY, Dong TT, Zheng G, Fu JZ, Li SQ. 2016. High endemism at cave entrances: a case study of spiders of the genus Uthina. Scientific Reports, 6: 35757.
    [109] Yuan ZY, Zhang BL, Raxworthy CJ, Weisrock DW, Hime PM, Jin JQ, et al. 2019. Natatanuran frogs used the Indian Plate to step-stone disperse and radiate across the Indian Ocean. National Science Review, 6(1): 10−14.
    [110] Yuan ZY, Zhou WW, Chen X, Poyarkov NA Jr, Chen HM, Jang-Liaw NH, et al. 2016. Spatiotemporal diversification of the true frogs (Genus Rana): a historical framework for a widely studied group of model organisms. Systematic Biology, 65(5): 824−842. doi: 10.1093/sysbio/syw055
    [111] Zakšek V, Sket B, Trontelj P. 2007. Phylogeny of the cave shrimp Troglocaris: evidence of a young connection between Balkans and Caucasus. Molecular Phylogenetics and Evolution, 42(1): 223−235. doi: 10.1016/j.ympev.2006.07.009
    [112] Zhang PL, Huang TF, Wu T, Huang XL, Zhang YX, Liu ZX. 2019. Checklist, distribution and conservation of typical cavefish in China. Carsologica Sinica, 38(6): 937−945. (in Chinese)
    [113] Zhang Q, Xia L, Kimura Y, Shenbrot G, Zhang ZQ, Ge DY, et al. 2013. Tracing the origin and diversification of dipodoidea (Order: Rodentia): evidence from fossil record and molecular phylogeny. Evolutionary Biology, 40(1): 32−44. doi: 10.1007/s11692-012-9167-6
    [114] Zhang YY, Li SQ. 2013. Ancient lineage, young troglobites: recent colonization of caves by Nesticella spiders. BMC Evolutionary Biology, 13: 183. doi: 10.1186/1471-2148-13-183
    [115] Zhang YY, Li SQ. 2014. A spider species complex revealed high cryptic diversity in South China caves. Molecular Phylogenetics and Evolution, 79: 353−358. doi: 10.1016/j.ympev.2014.05.017
    [116] Zhao Z, Li SQ. 2017. Extinction vs. rapid radiation: the juxtaposed evolutionary histories of coelotine spiders support the Eocene–Oligocene orogenesis of the Tibetan Plateau. Systematic Biology, 66(6): 988−1006. doi: 10.1093/sysbio/syx042
    [117] Zhao Z, Shao LL, Li FY, Zhang XQ, Li SQ. 2020. Tectonic evolution of the Tethyan region created the Eurasian extratropical biodiversity hotspots: tracing Pireneitega spiders’ diversification history. Ecography, 43(9): 1400−1411. doi: 10.1111/ecog.05044
    [118] Zheng YC, Fu JZ, Li SQ. 2009. Toward understanding the distribution of Laurasian frogs: a test of Savage's biogeographical hypothesis using the genus Bombina. Molecular Phylogenetics and Evolution, 52(1): 70–83.
    [119] Zheng YM, Hou ZE, Li SQ. 2018. Bogidiella pingxiangensis, a new species of subterranean Amphipoda from southern China (Bogidiellidae). ZooKeys, 790: 63−75. doi: 10.3897/zookeys.790.28671
    [120] Zhu DC, Wang Q, Zhao ZD. 2017. Constraining quantitatively the timing and process of continent-continent collision using magmatic record: method and examples. Science China Earth Sciences, 60(6): 1040−1056. doi: 10.1007/s11430-016-9041-x
    [121] Zupan Hajna N. 2019. Dinaric karst—Geography and geology. In: White WB, Culver DC, Pipan T. Encyclopedia of Caves. 3rd ed. London: Academic Press, 353–362.
  • ZR-2021-322 Supplementary Table.pdf
  • 加载中
图(2)
计量
  • 文章访问数:  2459
  • HTML全文浏览量:  1142
  • PDF下载量:  326
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-31
  • 录用日期:  2021-11-08
  • 网络出版日期:  2021-11-10
  • 刊出日期:  2022-01-18

目录

    /

    返回文章
    返回