留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BMPR-IB gene disruption causes severe limb deformities in pigs

Qiang Yang Chuan-Min Qiao Wei-Wei Liu Hao-Yun Jiang Qi-Qi Jing Ya-Ya Liao Jun Ren Yu-Yun Xing

Qiang Yang, Chuan-Min Qiao, Wei-Wei Liu, Hao-Yun Jiang, Qi-Qi Jing, Ya-Ya Liao, Jun Ren, Yu-Yun Xing. BMPR-IB gene disruption causes severe limb deformities in pigs. Zoological Research, 2022, 43(3): 391-403. doi: 10.24272/j.issn.2095-8137.2021.291
Citation: Qiang Yang, Chuan-Min Qiao, Wei-Wei Liu, Hao-Yun Jiang, Qi-Qi Jing, Ya-Ya Liao, Jun Ren, Yu-Yun Xing. BMPR-IB gene disruption causes severe limb deformities in pigs. Zoological Research, 2022, 43(3): 391-403. doi: 10.24272/j.issn.2095-8137.2021.291

BMPR-IB基因缺失导致猪严重肢体畸形

doi: 10.24272/j.issn.2095-8137.2021.291

BMPR-IB gene disruption causes severe limb deformities in pigs

Funds: This work was supported by the National Natural Science Foundation of China (31560304) and National Key Research Programs of China (2016ZX08006-003)
More Information
  • 摘要: 在之前的研究中,我们原本计划通过CRISPR/Cas9编辑技术在猪的BMPR-IB基因中产生g.A746G的突变,然而却意外地获得了BMPR-IB纯合敲除仔猪(BMPR-IB-/-)和携带A746G突变的杂合子敲除仔猪(BMPR-IB-/746G)。PCR检测及测序结果显示BMPR-IB基因区域中发生了复杂的基因组重排。所有BMPR-IB-/-BMPR-IB-/746G仔猪都无法正常站立和行走。解剖学观察发现,这些仔猪均呈现出严重的四肢骨骼发育异常,其中前肢的前臂骨(尺骨、桡骨)扭曲及截短,腕骨、掌骨和指骨排列紊乱;相比前肢,后肢表现出更严重的畸形,包括腓侧半肢畸形、跗骨增大和脚趾关节骨排列紊乱。与BMPR-IB-/746G个体相比,BMPR-IB-/-仔猪的四肢骨骼畸形更为严重。通过蛋白质组学分析,在杂合子敲除仔猪(BMPR-IB-/746G)和对照组仔猪(WT)的后肢腓骨中鉴别到139个差异表达蛋白(DEPs),大多数DEPs是已知的参与骨骼或胚胎发育、TGF-β通路或肿瘤进展的重要因子;基因本体(GO)和蛋白质结构域富集分析也显示出这些通路上的变化。在排列前50的DEPs中,有一大部分蛋白如C1QA、MYO1H、SRSF1、P3H1、GJA1、TCOF1、RBM10、SPP2、MMP13及PHAX,均已被证明与骨骼发育显著相关。该研究为解析BMPR-IB在哺乳动物肢体发育中的作用提供了新的认识。
    #Authors contributed equally to this work
  • Figure  1.  Generation of BMPR-IB-modified PFFs and piglets

    A: Schematic of strategy used to generate BMPR-IB-modified PFFs via linear double-stranded DNA-mediated homology-directed repair. Q, glutamine; R, arginine. B: Long-range PCR detection of BMPR-IB-deleted mutations in cloned piglets and PFF colonies. Lane 15 is a negative control (water) and M is a DNA marker. C: Sequencing chromatograms showing BMPR-IB A746G mutation in cloned piglets. Mutated nucleotide is marked by red box. D: Sequencing chromatograms showing BMPR-IB KO mutations in cloned piglets. Target site is marked by a red box. KO, knockout. E: Genotypes of newborn piglets. WT, wild-type; BMPR-IB-/746G, harboring 746G and 1 365 bp del in trans; BMPR-IB-/-, harboring 746A and 2 bp del/2 431 bp del. F: Genome rearrangements of BMPR-IB gene in BMPR-IB-/746G and BMPR-IB-/- piglets. Deleted regions are marked in red.

    Figure  2.  Phenotypic characterization of BMPR-IB-disrupted piglets

    A: Whole-body photographs of symptomatic BMPR-IB-disrupted piglets (BMPR-IB-/746G and BMPR-IB-/-) and WT piglets. B: Radiographs of forelimb and hindlimb in piglets of three different genotypes. Absence of fibula is noted in mutant piglets (yellow arrow). Red arrow indicates third proximal phalanx (os compedale). One BMPR-IB-/-, two BMPR-IB-/746G, and two WT-cloned piglets were used for radiography. C: Anatomical views of underdeveloped skeleton of forelimb in mutant piglet compared to WT piglet. D: Anatomical views of underdeveloped skeleton of hindlimb of mutant piglet compared to WT piglet. Partial or complete absence of fibula (yellow arrow) can be observed in BMPR-IB-/746G and BMPR-IB-/- piglets. Third proximal phalanx (os compedale) fell off (red arrow) in BMPR-IB-/746G piglets. White bars: 2 cm.

    Figure  3.  Micro-CT analyses of forelimb bones of piglets

    A: High-resolution micro-CT scans of forelimb skeletons of WT, BMPR-IB-/746G, and BMPR-IB-/- piglets. B: 3D and 2D gray-scale images of radius of three different genotype piglets. C: Quantitative results of trabecular and cortical bone at radius distal end. Data are means±SD (WT, n=4; BMPR-IB-/746G, n=4; BMPR-IB-/-, n=2). ns: P>0.05; *: P<0.05; **: P<0.01. White bars: 1 cm. BV/TV, trabecular bone volume fraction; BS/TV, trabecular bone surface density; Tb.Sp, trabecular spacing; Tb.N, trabecular number; Tb.BMD, trabecular bone mineral density; Ct.BMD, cortical bone mineral density; Ct.Th, cortical thickness; Ct.ar/Tt.ar, cortical area fraction.

    Figure  4.  Micro-CT analyses of hindlimb bones of piglets

    A: High-resolution micro-CT scans of hindlimb skeletons of WT, BMPR-IB-/746G, and BMPR-IB-/- piglets. B: 3D and 2D gray-scale images of tibia of three different genotype piglets. C: Quantitative results of trabecular and cortical bone at tibia distal end. Data are means±SD (WT, n=4; BMPR-IB-/746G, n=4; BMPR-IB-/-, n=2). ns: P>0.05, *: P<0.05; **: P<0.01. White bars: 1 cm.

    Figure  5.  qRT-PCR and western blot analyses of BMPR-IB expression levels

    A: Relative BMPR-IB mRNA expression levels in liver, kidney, testicle, forelimb cartilage, hindlimb cartilage, forelimb ulna, and hindlimb fibula of WT, BMPR-IB-/746G, and BMPR-IB-/- piglets, determined by qRT-PCR. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as a control. B: Western blots of BMPR-IB in forelimb ulna and hindlimb fibula in three BMPR-IB-/746G piglets and three WT piglets. Liver and kidney samples of one BMPR-IB-/- piglet were used as negative controls. C: Quantitative results of BMPR-IB protein using ImageJ software. β-actin was used as a control. Data are mean±SD (WT, n=3; BMPR-IB-/746G, n=3; BMPR-IB-/-, n=1). *: P<0.05; **: P<0.01. As BMPR-IB mRNA and protein expression levels were not detectable in BMPR-IB-/- piglet samples, expression level columns are not displayed in (A) and (C) in this figure.

    Figure  6.  DEPs in hindlimb fibula between BMPR-IB-/746G and WT groups

    A: Volcano-plot distribution map. Red and blue dots denote significantly up- and down-regulated proteins, respectively. B: GO analysis of DEPs. Top 30 significantly enriched categories are shown in horizontal histogram. Horizontal axis represents –log10(P-value); vertical axis represents GO functional classification. C: Protein domain enrichment analysis of DEPs. Top 10 significantly enriched categories are shown in bubble chart. Functional classification is shown along vertical axis of bubble chart; proportion of DEPs by functional type divided by the ratio of identified proteins was log2 converted and shown along horizontal axis. Circle color indicates enriched P-value, and circle size indicates number of DEPs in functional classification.

    Figure  7.  Western blot analyses of DEP expression levels in hindlimb fibula between BMPR-IB-/746G and WT groups

    A: Western blots of DEPs in hindlimb fibula from three BMPR-IB-/746G piglets and three WT piglets. B: Quantitative analysis results of DEPs using ImageJ software. β-actin was used as a control. Data are mean±SD (WT, n=3; BMPR-IB-/746G, n=3). *: P<0.05; **: P<0.01.

    Table  1.   PRM-verified DEPs in hindlimb fibula of BMPR-IB-/746G piglets compared with WT individuals

    Protein accessionGeneBMPR-IB-/746G/WT ratio (PRM)BMPR-IB-/746G/WT
    P-value
    BMPR-IB-/746G/WT ratio (LQ)
    F1S4R5SRSF71.793.49E-041.69
    Q29101GJA11.521.45E-021.52
    P14287SPP11.931.52E-022.48
    F1SV56MMP131.971.72E-022.19
    P09571TF4.382.19E-022.78
    Q8HZV3TFRC1.662.31E-021.51
    F1SM14SPP23.152.52E-024.30
    PRM: Parallel reaction monitoring; LQ: 4D label-free quantitative proteomic analysis.
    下载: 导出CSV
  • [1] Alanis-Lobato G, Zohren J, McCarthy A, Fogarty NME, Kubikova N, Hardman E, et al. 2021. Frequent loss of heterozygosity in CRISPR-Cas9-edited early human embryos. Proceedings of the National Academy of Sciences of the United States of America, 118(22): e2004832117. doi: 10.1073/pnas.2004832117
    [2] Ansari M, Rainger JK, Murray JE, Hanson I, Firth HV, Mehendale F, et al. 2014. A syndromic form of Pierre Robin sequence is caused by 5q23 deletions encompassing FBN2 and PHAX. European Journal of Medical Genetics, 57(10): 587–595.
    [3] Arun RM, Lakkakula BVKS, Chitharanjan AB. 2016. Role of myosin 1H gene polymorphisms in mandibular retrognathism. American Journal of Orthodontics and Dentofacial Orthopedics, 149(5): 699−704. doi: 10.1016/j.ajodo.2015.10.028
    [4] Baur ST, Mai JJ, Dymecki SM. 2000. Combinatorial signaling through BMP receptor IB and GDF5: shaping of the distal mouse limb and the genetics of distal limb diversity. Development, 127(3): 605−619. doi: 10.1242/dev.127.3.605
    [5] Brochmann EJ, Behnam K, Murray SS. 2009. Bone morphogenetic protein-2 activity is regulated by secreted phosphoprotein-24 kd, an extracellular pseudoreceptor, the gene for which maps to a region of the human genome important for bone quality. Metabolism, 58(5): 644−650. doi: 10.1016/j.metabol.2009.01.001
    [6] Cabral WA, Barnes AM, Adeyemo A, Cushing K, Chitayat D, Porter FD, et al. 2012. A founder mutation in LEPRE1 carried by 1.5% of West Africans and 0.4% of African Americans causes lethal recessive osteogenesis imperfect. Genetics in Medicine, 14(5): 543−551. doi: 10.1038/gim.2011.44
    [7] Canaj H, Hussmann JA, Li H, Beckman KA, Goodrich L, Cho NH, et al. 2019. Deep profiling reveals substantial heterogeneity of integration outcomes in CRISPR knock-in experiments. BioRxiv,doi: 10.1101/841098.
    [8] Chen D, Ji X, Harris MA, Feng JQ, Karsenty G, Celeste AJ, et al. 1998. Differential roles for bone morphogenetic protein (BMP) receptor type IB and IA in differentiation and specification of mesenchymal precursor cells to osteoblast and adipocyte lineages. Journal of Cell Biology, 142(1): 295−305. doi: 10.1083/jcb.142.1.295
    [9] Chu MX, Liu ZH, Jiao CL, He YQ, Fang L, Ye SC, et al. 2007. Mutations in BMPR-IB and BMP-15 genes are associated with litter size in Small Tailed Han sheep (Ovis aries). Journal of Animal Science, 85(3): 598−603. doi: 10.2527/jas.2006-324
    [10] Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121): 819−823. doi: 10.1126/science.1231143
    [11] Cunha A, Nelson-Filho P, Marañón-Vásquez GA, de Carvalho Ramos AG, Dantas B, Sebastiani AM, et al. 2019. Genetic variants in ACTN3 and MYO1H are associated with sagittal and vertical craniofacial skeletal patterns. Archives of Oral Biology, 97: 85−90. doi: 10.1016/j.archoralbio.2018.09.018
    [12] Dai JW, Si JW, Wang MJ, Huang L, Fang B, Shi J, et al. 2016. Tcof1-related molecular networks in treacher collins syndrome. Journal of Craniofacial Surgery, 27(6): 1420−1426. doi: 10.1097/SCS.0000000000002719
    [13] Davis GH, Balakrishnan L, Ross IK, Wilson T, Galloway SM, Lumsden BM, et al. 2006. Investigation of the Booroola (FecB) and Inverdale (FecXI) mutations in 21 prolific breeds and strains of sheep sampled in 13 countries. Animal Reproduction Science, 92(1-2): 87−96. doi: 10.1016/j.anireprosci.2005.06.001
    [14] Demirhan O, Türkmen S, Schwabe GC, Soyupak S, Akgül E, Taştemir D, et al. 2005. A homozygous BMPR1B mutation causes a new subtype of acromesomelic chondrodysplasia with genital anomalies. Journal of Medical Genetics, 42(4): 314−317. doi: 10.1136/jmg.2004.023564
    [15] Dituri F, Cossu C, Mancarella S, Giannelli G. 2019. The interactivity between TGFβ and BMP signaling in organogenesis, fibrosis, and cancer. Cells, 8(10): 1130. doi: 10.3390/cells8101130
    [16] El-Brolosy MA, Stainier DYR. 2017. Genetic compensation: a phenomenon in search of mechanisms. PLoS Genetics, 13(7): e1006780. doi: 10.1371/journal.pgen.1006780
    [17] Gong GC, Dai YP, Fan BL, Zhu HB, Wang HP, Wang LL, et al. 2004. Production of transgenic blastocyst by nuclear transfer from different types of somatic cells in cattle. Science in China Series C:Life Sciences, 47(2): 183−189. doi: 10.1360/03yc0015
    [18] Grzanka M, Piekiełko-Witkowska A. 2021. The role of TCOF1 gene in health and disease: beyond treacher Collins syndrome. International Journal of Molecular Sciences, 22(5): 2482. doi: 10.3390/ijms22052482
    [19] Henderson CM, Shulman NJ, MacLean B, MacCoss MJ, Hoofnagle AN. 2018. Skyline performs as well as vendor software in the quantitative analysis of serum 25-hydroxy vitamin D and vitamin D binding globulin. Clinical Chemistry, 64(2): 408−410. doi: 10.1373/clinchem.2017.282293
    [20] Katagiri T, Watabe T. 2016. Bone morphogenetic proteins. Cold Spring Harbor Perspectives in Biology, 8(6): a021899. doi: 10.1101/cshperspect.a021899
    [21] Lee SH, Lee HK, Kim C, Kim YK, Ismail T, Jeong Y, et al. 2016. The splicing factor SRSF1 modulates pattern formation by inhibiting transcription of tissue specific genes during embryogenesis. Biochemical and Biophysical Research Communications, 477(4): 1011−1016. doi: 10.1016/j.bbrc.2016.07.021
    [22] Lehmann K, Seemann P, Stricker S, Sammar M, Meyer B, Süring K, et al. 2003. Mutations in bone morphogenetic protein receptor 1B cause brachydactyly type A2. Proceedings of the National Academy of Sciences of the United States of America, 100(21): 12277−12282. doi: 10.1073/pnas.2133476100
    [23] Li H, Wang D, Yuan YJ, Min J. 2017. New insights on the MMP-13 regulatory network in the pathogenesis of early osteoarthritis. Arthritis Research & Therapy, 19(1): 248.
    [24] Lin SX, Svoboda KKH, Feng JQ, Jiang XQ. 2016. The biological function of type I receptors of bone morphogenetic protein in bone. Bone Research, 4(1): 16005. doi: 10.1038/boneres.2016.5
    [25] Mahdavi M, Nanekarani S, Hosseini SD. 2014. Mutation in BMPR-IB gene is associated with litter size in Iranian Kalehkoohi sheep. Animal Reproduction Science, 147(3-4): 93−98. doi: 10.1016/j.anireprosci.2014.04.003
    [26] Miyazono K, Kamiya Y, Morikawa M. 2010. Bone morphogenetic protein receptors and signal transduction. Journal of Biochemistry, 147(1): 35−51. doi: 10.1093/jb/mvp148
    [27] Mulsant P, Lecerf F, Fabre S, Schibler L, Monget P, Lanneluc I, et al. 2001. Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Mérino ewes. Proceedings of the National Academy of Sciences of the United States of America, 98(9): 5104−5109. doi: 10.1073/pnas.091577598
    [28] Paznekas WA, Karczeski B, Vermeer S, Lowry RB, Delatycki M, Laurence F, et al. 2009. GJA1 mutations, variants, and connexin 43 dysfunction as it relates to the oculodentodigital dysplasia phenotype. Human Mutation, 30(5): 724−733. doi: 10.1002/humu.20958
    [29] Rahman MS, Akhtar N, Jamil HM, Banik RS, Asaduzzaman SM. 2015. TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Research, 3(1): 15005. doi: 10.1038/boneres.2015.5
    [30] Reader KL, Haydon LJ, Littlejohn RP, Juengel JL, McNatty KP. 2012. Booroola BMPR1B mutation alters early follicular development and oocyte ultrastructure in sheep. Reproduction, Fertility and Development, 24(2): 353−361. doi: 10.1071/RD11095
    [31] Rodor J, FitzPatrick DR, Eyras E, Cáceres JF. 2017. The RNA-binding landscape of RBM10 and its role in alternative splicing regulation in models of mouse early development. RNA Biology, 14(1): 45−57. doi: 10.1080/15476286.2016.1247148
    [32] Roy J, Polley S, De S, Mukherjee A, Batabyal S, Pan S, et al. 2011. Polymorphism of fecundity genes (FecB, FecX, and FecG) in the Indian Bonpala sheep. Animal Biotechnology, 22(3): 151−162. doi: 10.1080/10495398.2011.589239
    [33] Sargiannidou I, Christophidou-Anastasiadou V, Hadjisavvas A, Tanteles GA, Kleopa KA. 2021. Novel GJA1/Cx43 variant associated with oculo-dento-digital dysplasia syndrome: clinical phenotype and cellular mechanisms. Frontiers in Genetics, 11: 604806. doi: 10.3389/fgene.2020.604806
    [34] Sintuu C, Murray SS, Behnam K, Simon R, Jawien J, Silva JDP, et al. 2008. Full-length bovine spp24 [spp24 (24–203)] inhibits BMP-2 induced bone formation. Journal of Orthopaedic Research, 26(6): 753−758. doi: 10.1002/jor.20580
    [35] Skryabin BV, Kummerfeld DM, Gubar L, Seeger B, Kaiser H, Stegemann A, et al. 2020. Pervasive head-to-tail insertions of DNA templates mask desired CRISPR-Cas9-mediated genome editing events. Science Advances, 6(7): eaax2941. doi: 10.1126/sciadv.aax2941
    [36] Stickens D, Behonick DJ, Ortega N, Heyer B, Hartenstein B, Yu Y, et al. 2004. Altered endochondral bone development in matrix metalloproteinase 13-deficient mice. Development, 131(11): 5883−5895.
    [37] Takagi M, Ishii T, Barnes AM, Weis MA, Amano N, Tanaka M, et al. 2012. A novel mutation in LEPRE1 that eliminates only the KDEL ER-retrieval sequence causes non-lethal osteogenesis imperfect. PLoS One, 7(5): e36809. doi: 10.1371/journal.pone.0036809
    [38] Teo BHD, Bobryshev YV, The BK, Wong SH, Lu JH. 2012. Complement C1q production by osteoclasts and its regulation of osteoclast development. Biochemical Journal, 447(2): 229−237. doi: 10.1042/BJ20120888
    [39] Vranka JA, Pokidysheva E, Hayashi L, Zientek K, Mizuno K, Ishikawa Y, et al. 2010. Prolyl 3-hydroxylase 1 null mice display abnormalities in fibrillar collagen-rich tissues such as tendons, skin, and bones. Journal of Biological Chemistry, 285(22): 17253−17262. doi: 10.1074/jbc.M110.102228
    [40] Wilson T, Wu XY, Juengel JL, Ross IK, Lumsden JM, Lord EA, et al. 2001. Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells. Biology of Reproduction, 64(4): 1225−1235. doi: 10.1095/biolreprod64.4.1225
    [41] Yang Q, Zhao XY, Xing YY, Jiang C, Jiang K, Xu P, et al. 2018. A model of mucopolysaccharidosis type IIIB in pigs. Biology Open, 7(10): bio035386.
    [42] Yi SE, Daluiski A, Pederson R, Rosen V, Lyons KM. 2000. The type I BMP receptor BMPR-IB is required for chondrogenesis in the mouse limb. Development, 127(3): 621−630. doi: 10.1242/dev.127.3.621
    [43] Zhao M, Harris SE, Horn D, Geng ZP, Nishimura R, Mundy GR, et al. 2002. Bone morphogenetic protein receptor signaling is necessary for normal murine postnatal bone formation. Journal of Cell Biology, 157(6): 1049−1060. doi: 10.1083/jcb.200109012
    [44] Zhao XY, Yang Q, Zhao KW, Jiang C, Ren DR, Xu P, et al. 2016. Production of transgenic pigs with an introduced missense mutation of the bone morphogenetic protein receptor type IB gene related to prolificacy. Asian-Australasian Journal of Animal Sciences, 29(7): 925−937.
    [45] Zhou SW, Yu HH, Zhao XE, Cai B, Ding Q, Huang Y, et al. 2018. Generation of gene-edited sheep with a defined Booroola fecundity gene (FecBB) mutation in bone morphogenetic protein receptor type 1B (BMPR1B) via clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) 9. Reproduction, Fertility and Development, 30(12): 1616−1621. doi: 10.1071/RD18086
  • ZR-2021-291 Supplementary Material.pdf
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  1247
  • HTML全文浏览量:  590
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-17
  • 录用日期:  2022-03-31
  • 网络出版日期:  2022-03-31
  • 刊出日期:  2022-05-18

目录

    /

    返回文章
    返回