Unexpected expression of heat-activated transient receptor potential (TRP) channels in winter torpid bats and cold-activated TRP channels in summer active bats
-
摘要: 感知温度变化的能力对哺乳动物的生存至关重要。哺乳动物主要是通过温度敏感型瞬时受体电位通道(Thermosensitive transient receptor potential channels, Thermo-TRPs)感应温度变化。一些哺乳类动物为了度过寒冷的冬季并存活下来会进入冬眠状态,在此期间它们的体温有剧烈波动;然而,这些哺乳动物具有哪些潜在的温度感受(thermal response)调节机制还不清楚。我们运用实时荧光聚合酶链式反应和蛋白质免疫印记等方法,发现大足鼠耳蝠(Myotis ricketti) 在冬季蛰伏期会高表达热激活通道TRPs(例如TRPV1和TRPV4),而在夏季活跃期则高表达冷激活TRPs(例如,TRPM8和TRPC5)。我们也发现小鼠在温度相对较高的条件(40 oC)下,会高表达冷激活TRPs(例如 Trpm8 和 Trpc5 )。这些结果提示,小型哺乳动物在温暖或较热的状况下,会上调表达冷激活TRPs。通过结合位点分析,我们发现一些同源异型盒(HOX)转录因子(Transcription factor, TF)可以调节热激活和冷激活TRPs基因的表达,而POU(Pit-Oct-Unc)家族的一些转录因子则调节温热敏感和冷激活TRPs基因的表达。双荧光素酶报告基因检测结果表明,转录因子HOXA9,POU3F1和POU5F1调节 TRPC5 的表达,可见Thermo-TRPs基因是受到HOX和POU家族中多个转录因子在不同水平上的调控。这项研究揭示蝙蝠为了在冬眠中存活下来,而采取的温度感觉适应机制。
-
关键词:
- 冬眠 /
- 蝙蝠 /
- 脑 /
- 温度敏感型瞬时受体电位通道
Abstract: The ability to sense temperature changes is crucial for mammalian survival. Mammalian thermal sensing is primarily carried out by thermosensitive transient receptor potential channels (Thermo-TRPs). Some mammals hibernate to survive cold winter conditions, during which time their body temperature fluctuates dramatically. However, the underlying mechanisms by which these mammals regulate thermal responses remain unclear. Using quantitative real-time polymerase chain reaction (qRT-PCR) and the Western blotting, we found that Myotis ricketti bats had high levels of heat-activated TRPs (e.g., TRPV1 and TRPV4) during torpor in winter and cold-activated TRPs (e.g., TRPM8 and TRPC5) during active states in summer. We also found that laboratory mice had high mRNA levels of cold-activated TRPs (e.g., Trpm8 and Trpc5) under relatively hot conditions (i.e., 40 °C). These data suggest that small mammals up-regulate the expression of cold-activated TRPs even under warm or hot conditions. Binding site analysis showed that some homeobox (HOX) transcription factors (TFs) regulate the expression of hot- and cold-activated TRP genes and that some TFs of the Pit-Oct-Unc (POU) family regulate warm-sensitive and cold-activated TRP genes. The dual-luciferase reporter assay results demonstrated that TFs HOXA9, POU3F1, and POU5F1 regulate TRPC5 expression, suggesting that Thermo-TRP genes are regulated by multiple TFs of the HOX and POU families at different levels. This study provides insights into the adaptive mechanisms underlying thermal sensing used by bats to survive hibernation.-
Key words:
- Hibernation /
- Bats /
- Brain /
- Thermo-TRPs
-
Figure 1. Expression of various Thermo-TRPs in bats under different physiological states
A–C: Relative mRNA levels of Thermo-TRPs are shown: heat-activated TRPV-1, -2, -3, and -4 (A), TRPM-2, -4, and -5 (B), and cold-activated TRPM8, TRPC5, and TRPA1 (C) of bats in torpid (T), 2 h after arousal (2 h), 24 h after arousal (24 h), and active (AC) states. D: Schematic: Torpid bats with higher abundance of heat- activated TRPs and active bats with higher abundance of warm-sensitive and cold-activated TRPs. E: Relative level of UCP1 mRNA. F, G: Western blotting of Thermo-TRPs (F), and relative amount of each target protein (G) in bats under different states. kDa represents molecular weight of proteins. H: Relative mRNA and protein levels of six Thermo-TRPs in bats under different states. Difference is significant (P<0.05) for values denoted with different letters.
Figure 2. Transcription factors (TFs) that regulate Thermo-TRP gene expression
A–C: Schematic of TF binding of HOX, POU, FOX, SP, E2F, JUND, and ETS families to Thermo-TRP genes. h- and c-TRPs represent heat- and cold-activated TRPs, respectively (A). Other panels show relative mRNA levels of some TFs of HOX (B) and POU (C) families of bats in torpid (T), 2 h after arousal (2 h), 24 h after arousal (24 h), and active (AC) states. D, E: Western blotting results of several TFs are shown in (D), and their relative abundance in bats under various states is shown in (E). F, G: Relative mRNA and protein levels of six TFs are shown in (F) and six TFs and 10 TRPs are shown in (G). Difference is significant (P<0.05) for values denoted with different letters.
Figure 3. Relative mRNA levels of Thermo-TRPs and TFs in temperature-stimulated mice
A, B: Relative mRNA abundance of 10 Thermo-TRPs (A) and several TFs in HOX and POU families (B) of mice (n=6 per temperature group). C: Body weights of mice treated at 4 °C, 25 °C, 37 °C, and 40 °C for 6 days. Statistical significance (*: P=0.0041) of differences in body weight between 37 °C- and 40 °C-treated mice and between 4 °C- and 25 °C-treated mice was determined by two-way ANOVA. Difference is significant (P<0.05) for values denoted with different letters.
Figure 4. Regulation of TRPC5 expression by HOXA9, POU3F1, and POU5F1
A: Schematic of plasmids pcDNA3.1(+) and psiCHECK-2TM. B: Relative luciferase activity of cells containing HOXA9 expression vector and reporter plasmid with Trpc5 promoter region. C, D: Relative luciferase activity of cells containing POU5F1 expression vector and reporter plasmid with Trpc5 3'-untranslated region (3'-UTR) (C) and that of cells containing POU3F1 expression vector and reporter plasmid with Trpc5 3'-UTR (D). Blank: Cells containing no plasmids. Positive control (pcheck2): Cells transfected with psiCHECK-2. pcDNA3.1NC: Cells transfected with empty vector pcDNA3.1(+). Difference is significant (P<0.05) for values denoted with different letters.
Table 1. List of 10 thermo-TRPs and their temperature thresholds for activation#
H* Channel Threshold temp for activation (°C) Expression location Physiological function Hot-sensitive TRPV subfamily TRPV1 >40 Brain, Skin, Bladder Thermosensation, synaptic plasticity, pain sensation, inflammation, ischemia/reperfusion injury, body temperature regulation, metabolism (Baez et al., 2014; Castillo et al., 2018; Caterina et al., 1999; Dhaka et al., 2006; Güler et al., 2002; Huang et al., 2006; Jardín et al., 2017; Kashio, 2021; Nilius & Owsianik, 2011; Peier et al., 2002; Smith et al., 2002; Talavera et al., 2020; Vay et al., 2012) TRPV2 >50 CNS neurons, Heart, Various tissues Thermosensation (noxious heat), phagocytosis, pain sensation, osmosensation (Castillo et al., 2018; Dhaka et al., 2006; Huang et al., 2006; Kashio, 2021; Nilius & Owsianik, 2011; Palkar et al., 2015; Peier et al., 2002; Smith et al., 2002; Vay et al., 2012) TRPV3 >30 Brain, Tongue, Gut, Skin keratinocytes Thermosensation, nociception, wound healing, pain sensation, skin functions (Baez et al., 2014; Castillo et al., 2018; Dhaka et al., 2006; Huang et al., 2006; Kashio, 2021; Nilius & Owsianik, 2011; Peier et al., 2002; Smith et al., 2002) TRPV4 25–42 CNS neurons, Heart, Kidney, Inner ear, liver, Trachea, Fat, Salivary gland, Skin keratinocytes Thermosensation, osmosensation, pain sensation, neural excitability, skin functions (Baez et al., 2014; Castillo et al., 2018; Dhaka et al., 2006; Güler et al., 2002; Huang et al., 2006; Kashio, 2021; Nilius & Owsianik, 2011; Vay et al., 2012) TRPM subfamily TRPM2 34–42 Brain, Bone marrow, Eye, Heart, Lymph nodes Thermosensation, apoptosis, pain sensation, body temperature regulation, insulin secretion (Castillo et al., 2018; Kashio, 2021; Nilius & Owsianik, 2011; Zhong et al., 2016) TRPM4 15–35 Heart, Lung, CNS neurons, Gut Thermosensation, releasing hormone, insulin secretion, chemosensory (Baez et al., 2014; Castillo et al., 2018; Kashio, 2021; Nilius & Owsianik, 2011) TRPM5 15–35 Tongue, Lung, Brain, Taste cells, Gut Taste (sweet, bitter, umami), thermosensation, chemosensory, insulin secretion (Castillo et al., 2018; Kashio, 2021; Nilius & Owsianik, 2011; Talavera et al., 2005) Cold-sensitive TRPM8 ≤25 Sensory dorsal root, Trigeminal ganglia neurons, Liver, Prostate, Testis Thermosensation (cold), acrosome reaction, tumor growth, body temperature regulation (Baez et al., 2014; Castillo et al., 2018; Caterina et al., 1999; Dhaka et al., 2006, 2007; Güler et al., 2002; Huang et al., 2006; Kashio, 2021; Nilius & Owsianik, 2011; Peier et al., 2002; Vay et al., 2012) TRPC subfamily TRPC5 25–37 Brain Brain development, thermosensation (Baez et al., 2014; Castillo et al., 2018; Kashio, 2021; Nilius & Owsianik, 2011; Zimmermann et al., 2011) TRPA subfamily TRPA1$ ≤17 Sensory dorsal root, Trigeminal ganglia neurons, Various tissues Thermosensation (noxious cold), nociception, olfactory responses, pain sensation (Baez et al., 2014; Castillo et al., 2018; Dhaka et al., 2006; Huang et al., 2006; Jardín et al., 2017; Kashio, 2021; Nilius & Owsianik, 2011; Vay et al., 2012) #: Features of thermo-TRPs previously characterized in other mammalian species rather than bats. H*: Classification of several TRPs in human body (Ezquerra-Romano & Ezquerra, 2017): hot- and cold-sensitive TRPs are denoted in orange and green, respectively. $: TRPA1 is a heat-activated sensor in non-mammalian species (Saito & Tominaga, 2015). -
[1] Almeida MC, Hew-Butler T, Soriano RN, Rao S, Wang WY, Wang J, et al. 2012. Pharmacological blockade of the cold receptor TRPM8 attenuates autonomic and behavioral cold defenses and decreases deep body temperature. Journal of Neuroscience, 32(6): 2086−2099. doi: 10.1523/JNEUROSCI.5606-11.2012 [2] Andrews MT. 2019. Molecular interactions underpinning the phenotype of hibernation in mammals. Journal of Experimental Biology, 222(2): jeb160606. doi: 10.1242/jeb.160606 [3] Argyropoulos G, Harper ME. 2002. Invited review: uncoupling proteins and thermoregulation. Journal of Applied Physiology, 92(5): 2187−2198. doi: 10.1152/japplphysiol.00994.2001 [4] Baez D, Raddatz N, Ferreira G, Gonzalez C, Latorre R. 2014. Gating of thermally activated channels. Current Topics in Membranes, 74: 51−87. [5] Barnes BM. 1989. Freeze avoidance in a mammal: body temperatures below 0 oC in an Arctic hibernator. Science, 244(4912): 1593−1595. doi: 10.1126/science.2740905 [6] Bernal L, Sotelo-Hitschfeld P, König C, Sinica V, Wyatt A, Winter Z, et al. 2021. Odontoblast TRPC5 channels signal cold pain in teeth. Science Advances, 7(13): eabf5567. doi: 10.1126/sciadv.abf5567 [7] Carey HV, Andrews MT, Martin SL. 2003. Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiological Reviews, 83(4): 1153−1181. doi: 10.1152/physrev.00008.2003 [8] Carnesecchi J, Pinto PB, Lohmann I. 2018. Hox transcription factors: an overview of multi-step regulators of gene expression. International Journal of Developmental Biology, 62(11–12): 723–732. [9] Castillo K, Diaz-Franulic I, Canan J, Gonzalez-Nilo F, Latorre R. 2018. Thermally activated TRP channels: molecular sensors for temperature detection. Physical Biology, 15(2): 021001. doi: 10.1088/1478-3975/aa9a6f [10] Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D. 1999. A capsaicin-receptor homologue with a high threshold for noxious heat. Nature, 398(6726): 436−441. doi: 10.1038/18906 [11] Cheshire Jr WP. 2016. Thermoregulatory disorders and illness related to heat and cold stress. Autonomic Neuroscience:Basic and Clinical, 196: 91−104. doi: 10.1016/j.autneu.2016.01.001 [12] Dawe AR, Morrison PR. 1955. Characteristics of the hibernating heart. American Heart Journal, 49(3): 367−384. doi: 10.1016/0002-8703(55)90031-4 [13] Dhaka A, Murray AN, Mathur J, Earley TJ, Petrus MJ, Patapoutian A. 2007. TRPM8 is required for cold sensation in mice. Neuron, 54(3): 371−378. doi: 10.1016/j.neuron.2007.02.024 [14] Dhaka A, Viswanath V, Patapoutian A. 2006. Trp ion channels and temperature sensation. Annual Review of Neuroscience, 29: 135−161. doi: 10.1146/annurev.neuro.29.051605.112958 [15] Diaz-Franulic I, Poblete H, Miño-Galaz G, González C, Latorre R. 2016. Allosterism and structure in thermally activated transient receptor potential channels. Annual Review of Biophysics, 45: 371−398. doi: 10.1146/annurev-biophys-062215-011034 [16] Du GX, Tian YH, Yao ZH, Vu S, Zheng J, Chai LH, et al. 2020. A specialized pore turret in the mammalian cation channel TRPV1 is responsible for distinct and species-specific heat activation thresholds. Journal of Biological Chemistry, 295(28): 9641−9649. doi: 10.1074/jbc.RA120.013037 [17] Ezquerra-Romano I, Ezquerra A. 2017. Highway to thermosensation: a traced review, from the proteins to the brain. Reviews in the Neurosciences, 28(1): 45−57. doi: 10.1515/revneuro-2016-0039 [18] Feng Q. 2014. Temperature sensing by thermal TRP channels: thermodynamic basis and molecular insights. Current Topics in Membranes, 74: 19−50. [19] Fornes O, Castro-Mondragon JA, Khan A, van der Lee R, Zhang X, Richmond PA, et al. 2020. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Research, 48(D1): D87−D92. [20] French AR. 1985. Allometries of the durations of torpid and euthermic intervals during mammalian hibernation: a test of the theory of metabolic control of the timing of changes in body temperature. Journal of Comparative Physiology B, 156(1): 13−19. doi: 10.1007/BF00692921 [21] Golozoubova V, Hohtola E, Matthias A, Jacobsson A, Cannon B, Nedergaard J. 2001. Only UCP1 can mediate adaptive nonshivering thermogenesis in the cold. The FASEB Journal, 15(11): 2048−2050. doi: 10.1096/fj.00-0536fje [22] Gracheva EO, Cordero-Morales JF, González-Carcacía JA, Ingolia NT, Manno C, Aranguren CI, et al. 2011. Ganglion-specific splicing of TRPV1 underlies infrared sensation in vampire bats. Nature, 476(7358): 88−91. doi: 10.1038/nature10245 [23] Güler AD, Lee H, Iida T, Shimizu I, Tominaga M, Caterina M. 2002. Heat-evoked activation of the ion channel, TRPV4. Journal of Neuroscience, 22(15): 6408−6414. doi: 10.1523/JNEUROSCI.22-15-06408.2002 [24] Han YJ, Zheng GT, Yang TX, Zhang SY, Dong D, Pan YH. 2015. Adaptation of peroxisome proliferator-activated receptor alpha to hibernation in bats. BMC Evolutionary Biology, 15: 88. doi: 10.1186/s12862-015-0373-6 [25] Hankenson FC, Marx JO, Gordon CJ, David JM. 2018. Effects of rodent thermoregulation on animal models in the research environment. Comparative Medicine, 68(6): 425−438. doi: 10.30802/AALAS-CM-18-000049 [26] Himms-Hagen J. 1984. Nonshivering thermogenesis. Brain Research Bulletin, 12(2): 151−160. doi: 10.1016/0361-9230(84)90183-7 [27] Hoffstaetter LJ, Bagriantsev SN, Gracheva EO. 2018. TRPs et al. : a molecular toolkit for thermosensory adaptations. Pflügers Archiv-European Journal of Physiology, 470(5): 745−759. [28] Huang JH, Zhang XM, McNaughton PA. 2006. Modulation of temperature-sensitive TRP channels. Seminars in Cell & Developmental Biology, 17(6): 638−645. [29] Huang WJ, Liao CC, Han YJ, Lv JY, Lei M, Li YY, et al. 2020. Co-activation of Akt, Nrf2, and NF-κB signals under UPRER in torpid Myotis ricketti bats for survival. Communications Biology, 3(1): 658. doi: 10.1038/s42003-020-01378-2 [30] Jabba S, Goyal R, Sosa-Pagán JO, Moldenhauer H, Wu J, Kalmeta B, et al. 2014. Directionality of temperature activation in mouse TRPA1 ion channel can be inverted by single-point mutations in ankyrin repeat six. Neuron, 82(5): 1017−1031. doi: 10.1016/j.neuron.2014.04.016 [31] Jardín I, López JJ, Diez R, Sánchez-Collado J, Cantonero C, Albarrán L, et al. 2017. TRPs in pain sensation. Frontiers in Physiology, 8: 392. doi: 10.3389/fphys.2017.00392 [32] Karashima Y, Talavera K, Everaerts W, Janssens A, Kwan KY, Vennekens R, et al. 2009. TRPA1 acts as a cold sensor in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 106(4): 1273−1278. doi: 10.1073/pnas.0808487106 [33] Kashio M. 2021. Thermosensation involving thermo-TRPs. Molecular and Cellular Endocrinology, 520: 111089. doi: 10.1016/j.mce.2020.111089 [34] Klotz LO, Sánchez-Ramos C, Prieto-Arroyo I, Urbánek P, Steinbrenner H, Monsalve M. 2015. Redox regulation of FoxO transcription factors. Redox Biology, 6: 51−72. doi: 10.1016/j.redox.2015.06.019 [35] Lambert SA, Jolma A, Campitelli LF, Das PK, Yin YM, Albu M, et al. 2018. The human transcription factors. Cell, 172(4): 650−665. doi: 10.1016/j.cell.2018.01.029 [36] Laursen WJ, Mastrotto M, Pesta D, Funk OH, Goodman JB, Merriman DK, et al. 2015. Neuronal UCP1 expression suggests a mechanism for local thermogenesis during hibernation. Proceedings of the National Academy of Sciences of the United States of America, 112(5): 1607−1612. doi: 10.1073/pnas.1421419112 [37] Laursen WJ, Schneider ER, Merriman DK, Bagriantsev SN, Gracheva EO. 2016. Low-cost functional plasticity of TRPV1 supports heat tolerance in squirrels and camels. Proceedings of the National Academy of Sciences of the United States of America, 113(40): 11342−11347. doi: 10.1073/pnas.1604269113 [38] Lazzeroni ME, Burbrink FT, Simmons NB. 2018. Hibernation in bats (Mammalia: Chiroptera) did not evolve through positive selection of leptin. Ecology and Evolution, 8(24): 12576−12596. doi: 10.1002/ece3.4674 [39] Li YQ. 2010. Master stem cell transcription factors and signaling regulation. Cellular Reprogramming, 12(1): 3−13. doi: 10.1089/cell.2009.0033 [40] Liu BY, Yao J, Zhu MX, Qin F. 2011. Hysteresis of gating underlines sensitization of TRPV3 channels. Journal of General Physiology, 138(5): 509−520. doi: 10.1085/jgp.201110689 [41] Liu D, Zheng SH, Zheng GT, Lv QY, Shen B, Yuan XP, et al. 2018. Adaptation of the FK506 binding protein 1B to hibernation in bats. Cryobiology, 83: 1−8. doi: 10.1016/j.cryobiol.2018.07.004 [42] Malik V, Zimmer D, Jauch R. 2018. Diversity among POU transcription factors in chromatin recognition and cell fate reprogramming. Cellular and Molecular Life Sciences, 75(9): 1587−1612. doi: 10.1007/s00018-018-2748-5 [43] Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25(4): 402−408. doi: 10.1006/meth.2001.1262 [44] Matos-Cruz V, Schneider ER, Mastrotto M, Merriman DK, Bagriantsev SN, Gracheva EO. 2017. Molecular prerequisites for diminished cold sensitivity in ground squirrels and hamsters. Cell Reports, 21(12): 3329−3337. doi: 10.1016/j.celrep.2017.11.083 [45] Morin Jr P, Storey KB. 2009. Mammalian hibernation: differential gene expression and novel application of epigenetic controls. International Journal of Developmental Biology, 53(2–3): 433–442. [46] Nadezhdin KD, Neuberger A, Trofimov YA, Krylov NA, Sinica V, Kupko N, et al. 2021. Structural mechanism of heat-induced opening of a temperature-sensitive TRP channel. Nature Structural & Molecular Biology, 28(7): 564−572. [47] Nelson CJ, Otis JP, Carey HV. 2009. A role for nuclear receptors in mammalian hibernation. The Journal of Physiology, 587(9): 1863−1870. doi: 10.1113/jphysiol.2008.167692 [48] Nilius B, Owsianik G. 2011. The transient receptor potential family of ion channels. Genome Biology, 12(3): 218. doi: 10.1186/gb-2011-12-3-218 [49] Palkar R, Lippoldt EK, McKemy DD. 2015. The molecular and cellular basis of thermosensation in mammals. Current Opinion in Neurobiology, 34: 14−19. doi: 10.1016/j.conb.2015.01.010 [50] Pan YH, Zhang YJ, Cui J, Liu Y, McAllan BM, Liao CC, et al. 2013. Adaptation of phenylalanine and tyrosine catabolic pathway to hibernation in bats. PLoS One, 8(4): e62039. doi: 10.1371/journal.pone.0062039 [51] Paricio-Montesinos R, Schwaller F, Udhayachandran A, Rau F, Walcher J, Evangelista R, et al. 2020. The sensory coding of warm perception. Neuron, 106(5): 830−841.e3. doi: 10.1016/j.neuron.2020.02.035 [52] Peier AM, Reeve AJ, Andersson DA, Moqrich A, Earley TJ, Hergarden AC, et al. 2002. A heat-sensitive TRP channel expressed in keratinocytes. Science, 296(5575): 2046−2049. doi: 10.1126/science.1073140 [53] Reeder DM, Frank CL, Turner GG, Meteyer CU, Kurta A, Britzke ER, et al. 2012. Frequent arousal from hibernation linked to severity of infection and mortality in bats with white-nose syndrome. PLoS One, 7(6): e38920. doi: 10.1371/journal.pone.0038920 [54] Reményi A, Tomilin A, Schöler HR, Wilmanns M. 2002. Differential activity by DNA-induced quarternary structures of POU transcription factors. Biochemical Pharmacology, 64(5–6): 979–984. [55] Romero-Calvo I, Ocón B, Martínez-Moya P, Suárez MD, Zarzuelo A, Martínez-Augustin O, et al. 2010. Reversible Ponceau staining as a loading control alternative to actin in Western blots. Analytical Biochemistry, 401(2): 318−320. doi: 10.1016/j.ab.2010.02.036 [56] Saito S, Tominaga M. 2015. Functional diversity and evolutionary dynamics of thermoTRP channels. Cell Calcium, 57(3): 214−221. doi: 10.1016/j.ceca.2014.12.001 [57] Smith GD, Gunthorpe MJ, Kelsell RE, Hayes PD, Reilly P, Facer P, et al. 2002. TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature, 418(6894): 186−190. doi: 10.1038/nature00894 [58] Stones RC, Wiebers JE. 1965. A review of temperature regulation in bats (Chiroptera). The American Midland Naturalist, 74(1): 155−167. doi: 10.2307/2423129 [59] Storey KB, Storey JM. 2010. Metabolic rate depression: the biochemistry of mammalian hibernation. Advances in Clinical Chemistry, 52: 78−108. [60] Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, et al. 2020. Mammalian transient receptor potential TRPA1 channels: from structure to disease. Physiological Reviews, 100(2): 725−803. doi: 10.1152/physrev.00005.2019 [61] Talavera K, Yasumatsu K, Voets T, Droogmans G, Shigemura N, Ninomiya Y, et al. 2005. Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature, 438(7070): 1022−1025. doi: 10.1038/nature04248 [62] Tan CH, McNaughton PA. 2015. TRP channels in the sensation of heat. Madrid R and Bacigalupo J. In: Madrid R, Bacigalupo J. TRP Channels in Sensory Transduction. Cham: Springer, 165–183. [63] Teeling EC, Springer MS, Madsen O, Bates P, O'brien S J, Murphy WJ. 2005. A molecular phylogeny for bats illuminates biogeography and the fossil record. Science, 307(5709): 580−584. doi: 10.1126/science.1105113 [64] Van Noort V, Snel B, Huynen MA. 2003. Predicting gene function by conserved co-expression. Trends in Genetics, 19(5): 238−242. doi: 10.1016/S0168-9525(03)00056-8 [65] Vay L, Gu CJ, McNaughton PA. 2012. The thermo‐TRP ion channel family: properties and therapeutic implications. British Journal of Pharmacology, 165(4): 787−801. doi: 10.1111/j.1476-5381.2011.01601.x [66] Wang H, Siemens J. 2015. TRP ion channels in thermosensation, thermoregulation and metabolism. Temperature, 2(2): 178−187. doi: 10.1080/23328940.2015.1040604 [67] Wang Y, Zhu TT, Ke SS, Fang N, Irwin DM, Lei M, et al. 2014. The great roundleaf bat (Hipposideros armiger) as a good model for cold-induced browning of intra-abdominal white adipose tissue. PLoS One, 9(11): e112495. doi: 10.1371/journal.pone.0112495 [68] Webb PI, Speakman JR, Racey PA. 2011. How hot is a hibernaculum? A review of the temperatures at which bats hibernate. Canadian Journal of Zoology, 74(4): 761−765. [69] Xue HL, Wang Z, Hua YJ, Ke SS, Wang Y, Zhang JP, et al. 2018. Molecular signatures and functional analysis of beige adipocytes induced from in vivo intra-abdominal adipocytes. Science Advances, 4(7): eaar5319. doi: 10.1126/sciadv.aar5319 [70] Yin QY, Ge HX, Liao CC, Liu D, Zhang SY, Pan YH. 2016. Antioxidant defenses in the brains of bats during hibernation. PLoS One, 11(3): e0152135. doi: 10.1371/journal.pone.0152135 [71] Zhang Y, Morrone G, Zhang JX, Chen XA, Lu XL, Ma L, et al. 2003. CUL-4A stimulates ubiquitylation and degradation of the HOXA9 homeodomain protein. EMBO Journal, 22(22): 6057−6067. doi: 10.1093/emboj/cdg577 [72] Zholos AV. 2014. Trpc5. In: Nilius B, Flockerzi V. Mammalian Transient Receptor Potential (TRP) Cation Channels. Heidelberg: Springer. [73] Zhong J, Amina S, Liang MK, Akther S, Yuhi T, Nishimura T, et al. 2016. Cyclic ADP-Ribose and heat regulate oxytocin release via CD38 and TRPM2 in the hypothalamus during social or psychological stress in mice. Frontiers in Neuroscience, 10: 304. [74] Zimmermann K, Lennerz JK, Hein A, Link AS, Kaczmarek JS, Delling M, et al. 2011. Transient receptor potential cation channel, subfamily C, member 5 (TRPC5) is a cold-transducer in the peripheral nervous system. Proceedings of the National Academy of Sciences of the United States of America, 108(44): 18114−18119. doi: 10.1073/pnas.1115387108 -
ZR-2021-209 Supplementary Material.rar
-