留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multidimensional amphibian diversity and community structure along a 2 600 m elevational gradient on the eastern margin of the Qinghai-Tibetan Plateau

Xiao-Yi Wang Mao-Jun Zhong Jian Zhang Xing-Feng Si Sheng-Nan Yang Jian-Ping Jiang Jun-Hua Hu

Xiao-Yi Wang, Mao-Jun Zhong, Jian Zhang, Xing-Feng Si, Sheng-Nan Yang, Jian-Ping Jiang, Jun-Hua Hu. Multidimensional amphibian diversity and community structure along a 2 600 m elevational gradient on the eastern margin of the Qinghai-Tibetan Plateau. Zoological Research, 2022, 43(1): 40-51. doi: 10.24272/j.issn.2095-8137.2021.166
Citation: Xiao-Yi Wang, Mao-Jun Zhong, Jian Zhang, Xing-Feng Si, Sheng-Nan Yang, Jian-Ping Jiang, Jun-Hua Hu. Multidimensional amphibian diversity and community structure along a 2 600 m elevational gradient on the eastern margin of the Qinghai-Tibetan Plateau. Zoological Research, 2022, 43(1): 40-51. doi: 10.24272/j.issn.2095-8137.2021.166

青藏高原东缘两栖动物多样性沿海拔梯度的格局与群落结构

doi: 10.24272/j.issn.2095-8137.2021.166

Multidimensional amphibian diversity and community structure along a 2 600 m elevational gradient on the eastern margin of the Qinghai-Tibetan Plateau

Funds: This study was supported by the National Natural Science Foundation of China (31770568, 32071544), Natural Science Foundation of Shanghai (20ZR1418100) and “Light of West China” Program of the Chinese Academy of Sciences
More Information
  • 摘要: 山地系统孕育了进化上独特且极为丰富的生物多样性,对两栖动物来说尤其如此。然而,当前大多数山地系统中两栖动物沿海拔梯度的多样性格局及群落构建机制尚不清楚。峨眉山位于中国西南地区的青藏高原东缘,其丰富的生物多样性及较大的海拔跨度(2 600 m)为理解两栖动物的海拔梯度格局提供了理想的研究平台。该研究基于峨眉山两栖动物的详细调查数据,解析了其系统发育和功能多样性沿海拔梯度的分布格局及群落结构,并进一步评估了空间(面积)和环境因子(温度、降水、太阳辐射、归一化植被指数和潜在蒸发量)在不同维度两栖动物多样性及群落构建中的重要性。结果表明,峨眉山两栖动物系统发育和功能多样性沿海拔均呈单峰分布;控制物种数的影响后,它们的标准化效应值随海拔升高单调递增。系统发育净亲缘指数、最近亲缘指数及功能净亲缘指数均沿海拔呈现出由正转负的趋势,这表明群落结构经历了由聚集到发散的转变,并暗示构建机制可能存在由环境过滤到竞争排斥的变化。该研究阐明了环境过滤和竞争排斥在亚热带山地系统两栖动物群落构建中的重要性:随着海拔升高,两者的主导作用可能会发生转换。通过整合不同维度的生物多样性,该研究有助于深入理解山地系统两栖动物的群落构建机制。
  • Figure  1.  Conceptual framework for inferring community structures and assembly processes along elevational gradients

    A: Hypothetical communities and three potential community structures are illustrated. NRI and NTI are net relatedness index and nearest taxon index, respectively. NRI or NTI>0 indicates phylogenetic or functional clustering; NRI or NTI<0 indicates phylogenetic or functional overdispersion; NRI or NTI=0 indicates random structure. B: Inferring community assembly processes from phylogenetic niche conservatism hypothesis: clustering communities are driven by environmental filtering and overdispersed communities are driven by competitive exclusion along the elevational gradient. Although environmental filtering in harsh conditions (e.g., lower temperatures and productivity) may be an important driver shaping communities and competitive exclusion dominates in benign conditions, community assembly processes along the elevational gradient are actually more complex and often contain an offset process. Long triangle represents variation in strength of environmental filtering and competitive exclusion along the elevational gradient.

    Figure  2.  Location (A) and elevational overview of Mount Emei (B); phylogenetic tree reconstruction (C) and elevational range size (D) of amphibians on Mount Emei, southwestern China

    Figure  3.  Diversity patterns of amphibians along the elevational gradient

    A: Phylogenetic diversity (PD); B: Functional diversity (FD); C: Standardized effect size of PD (SES.PD); D: SES.FD. Shaded areas show 95% confidence intervals

    Figure  4.  Phylogenetic and functional structures of amphibian communities along the elevational gradient

    A: Phylogenetic net relatedness index (NRI); B: Phylogenetic nearest taxon index (NTI); C: Functional NRI; D: Functional NTI. Shaded areas show range between −1.96 and 1.96. Solid lines indicate trend of NRI and NTI along the elevational gradient (for more details see Supplementary Table S7).

    Table  1.   Influences of each spatial and environmental variable on multidimensional diversity and community structures based on simple ordinary least squares (OLS) regression analyses

    Multidimensional metricsAreaNDVIPotential evapotranspirationSolar radiationMean monthly temperature rangeTemperature seasonalityTemperature annual rangeAnnual precipitation
    Species richness (SR)
    Coefficient0.637−0.1180.8650.651−0.5450.9010.5980.780
    R20.4010.0140.7480.4240.2970.8120.3570.608
    P0.0200.701<0.0010.0160.054<0.0010.0310.002
    Phylogenetic diversity (PD)
    Coefficient0.605−0.1850.8940.699−0.5770.9220.5920.818
    R20.3660.0340.7990.4890.3320.8500.3510.669
    P0.0280.545<0.0010.0080.039<0.0010.033<0.001
    Functional diversity (FD)
    Coefficient0.637−0.1470.8620.673−0.5290.9050.6140.784
    R20.4060.0220.7560.4540.2800.8190.3770.615
    P0.0190.632<0.0010.0110.063<0.0010.0260.002
    SES.PD
    Coefficient−0.3380.274−0.753−0.7240.679−0.691−0.250−0.762
    R20.1140.0750.5670.5290.4600.4770.0620.581
    P0.2590.3660.0030.0050.0110.0090.4110.002
    SES.FD
    Coefficient−0.2640.104−0.598−0.5230.557−0.550−0.183−0.611
    R20.0690.0110.3570.2730.3100.3020.0340.373
    P0.3840.7350.0310.0670.0480.0520.5500.027
    Phylogenetic NRI
    Coefficient0.320−0.2910.7480.752−0.6570.6780.2520.762
    R20.1020.0840.5590.5660.4320.4600.0640.581
    P0.2860.3360.0030.0030.0150.0110.4050.002
    Phylogenetic NTI
    Coefficient0.395−0.2580.7120.619−0.6550.6830.2570.703
    R20.1560.0660.5070.3830.4290.4660.0660.495
    P0.1810.3960.0060.0240.0150.0100.4000.007
    Functional NRI
    Coefficient0.317−0.2490.8230.760−0.6820.7660.3280.823
    R20.1010.0620.6780.5770.4650.5860.1080.678
    P0.2910.413<0.0010.0030.0100.0020.274<0.001
    Functional NTI
    Coefficient0.5140.2280.4450.232−0.2410.4960.3840.378
    R20.2650.0520.1980.0540.0580.2460.1480.143
    P0.0720.4540.1280.4460.4280.0850.1950.203
    Negative relationships are indicated by (−). The level of significance is P<0.05. SES: Standardized effect size; NRI: Net relatedness index; NTI: Nearest taxon index; NDVI: Normalized difference vegetation index.
    下载: 导出CSV

    Table  2.   Influences of spatial and environmental variables on multidimensional biodiversity and community structures

    Multidimensional
    metrics
    Coefficient of the best model
    AreaNDVIPotential evapotranspirationSolar radiationMean monthly temperature rangeTemperature seasonalityTemperature annual rangeAnnual precipitationR2adj
    Species richness (SR)1.924−4.7643.131−6.0850.941
    Phylogenetic diversity (PD)2.186−1.9893.585−6.1140.956
    Functional diversity (FD)2.656−2.0483.908−6.9260.960
    SES.PD−0.9631.4820.868
    SES.FD−2.363−2.4401.8620.891
    Phylogenetic NRI1.6602.006−0.8190.727
    Phylogenetic NTI1.025−1.881−1.1260.726
    Functional NRI1.430−3.8715.3690.857
    Functional NTI1.412−1.4190.662
    Best model selection for multiple regressions is based on lowest AICc. Negative relationships are indicated by (−). SES: Standardized effect size; NRI: Net relatedness index; NTI: Nearest taxon index; NDVI: Normalized difference vegetation index.
    下载: 导出CSV
  • [1] Anderson DR. 2008. Model Based Inference in the Life Sciences: A Primer on Evidence. New York: Springer.
    [2] Bancroft BA, Baker NJ, Blaustein AR. 2007. Effects of UVB radiation on marine and freshwater organisms: a synthesis through meta-analysis. Ecology Letters, 10(4): 332−345. doi: 10.1111/j.1461-0248.2007.01022.x
    [3] Bartoń K. 2020. MuMIn: multi-model inference. R package version 1.43. 17.
    [4] Buckley LB, Jetz W. 2007. Environmental and historical constraints on global patterns of amphibian richness. Proceedings of the Royal Society B:Biological Sciences, 274(1614): 1167−1173. doi: 10.1098/rspb.2006.0436
    [5] Burnham KP, Anderson DR. 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. New York: Springer.
    [6] Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW. 2009. The merging of community ecology and phylogenetic biology. Ecology Letters, 12(7): 693−715. doi: 10.1111/j.1461-0248.2009.01314.x
    [7] Chamberlain D, Brambilla M, Caprio E, Pedrini P, Rolando A. 2016. Alpine bird distributions along elevation gradients: the consistency of climate and habitat effects across geographic regions. Oecologia, 181(4): 1139−1150. doi: 10.1007/s00442-016-3637-y
    [8] Chase JM. 2010. Stochastic community assembly causes higher biodiversity in more productive environments. Science, 328(5984): 1388−1391. doi: 10.1126/science.1187820
    [9] Chen CW, Chen CS, Wang YP. 2019. Ecological correlates of extinction risk in Chinese amphibians. Diversity and Distributions, 25(10): 1586−1598. doi: 10.1111/ddi.12961
    [10] Coyle JR, Halliday FW, Lopez BE, Palmquist KA, Wilfahrt PA, Hurlbert AH. 2014. Using trait and phylogenetic diversity to evaluate the generality of the stress-dominance hypothesis in eastern North American tree communities. Ecography, 37(9): 814−826. doi: 10.1111/ecog.00473
    [11] Dehling DM, Fritz SA, Töpfer T, Päckert M, Estler P, Bohning-Gaese K, et al. 2014. Functional and phylogenetic diversity and assemblage structure of frugivorous birds along an elevational gradient in the tropical Andes. Ecography, 37(11): 1047−1055.
    [12] Ding ZF, Hu HJ, Cadotte MW, Liang JC, Hu YM, Si XF. 2021. Elevational patterns of bird functional and phylogenetic structure in the central Himalaya. Ecography, 44(9): 1403−1417. doi: 10.1111/ecog.05660
    [13] Drummond AJ, Rambaut A. 2007. BEAST: bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7(1): 214. doi: 10.1186/1471-2148-7-214
    [14] Du YB, Fan LQ, Xu ZH, Wen ZX, Cai TL, Feijo A, et al. 2021. A multi-faceted comparative perspective on elevational beta-diversity: the patterns and their causes. Proceedings of the Royal Society B:Biological Sciences, 288(1949): 20210343. doi: 10.1098/rspb.2021.0343
    [15] Elsen PR, Tingley MW. 2015. Global mountain topography and the fate of montane species under climate change. Nature Climate Change, 5(8): 772−776. doi: 10.1038/nclimate2656
    [16] Faith DP. 1992. Conservation evaluation and phylogenetic diversity. Biological Conservation, 61(1): 1−10. doi: 10.1016/0006-3207(92)91201-3
    [17] Fei L, Hu SQ, Ye CY, Huang YZ. 2009a. Fauna Sinica. Amphibia. Vol. 2. Anura. Beijing: Science Press. (in Chinese)
    [18] Fei L, Hu SQ, Ye CY, Huang YZ. 2009b. Fauna Sinica. Amphibia. Vol. 3. Anura. Ranidae. Beijing: Science Press. (in Chinese)
    [19] Fei L, Ye CY, Hu SQ, Liu CZ. 1976. Amphibian fauna of Sichuan. Materials for Herpetological Research, 3: 1−17. (in Chinese)
    [20] Fei L, Ye CY, Hu SQ, Tian WS. 2006. Fauna Sinica. Amphibia. Vol. 1. General Account of Amphibia, Gymnophiona and Urodela. Beijing: Science Press. (in Chinese)
    [21] Fick SE, Hijmans RJ. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12): 4302−4315. doi: 10.1002/joc.5086
    [22] Fritz SA, Purvis A. 2010. Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. Conservation Biology, 24(4): 1042−1051. doi: 10.1111/j.1523-1739.2010.01455.x
    [23] Fritz SA, Rahbek C. 2012. Global patterns of amphibian phylogenetic diversity. Journal of Biogeography, 39(8): 1373−1382. doi: 10.1111/j.1365-2699.2012.02757.x
    [24] Gaston KJ. 2000. Global patterns in biodiversity. Nature, 405(6783): 220−227. doi: 10.1038/35012228
    [25] Gower JC. 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 53(3–4): 325–338.
    [26] Graham CH, Carnaval AC, Cadena CD, Zamudio KR, Roberts TE, Parra JL, et al. 2014. The origin and maintenance of montane diversity: integrating evolutionary and ecological processes. Ecography, 37(8): 711−719. doi: 10.1111/ecog.00578
    [27] Graham CH, Parra JL, Rahbek C, McGuire JA. 2009. Phylogenetic structure in tropical hummingbird communities. Proceedings of the National Academy of Sciences of the United States of America, 106(S2): 19673−19678.
    [28] Hanz DM, Böhning-Gaese K, Ferger SW, Fritz SA, Neuschulz EL, Quitián M, et al. 2019. Functional and phylogenetic diversity of bird assemblages are filtered by different biotic factors on tropical mountains. Journal of Biogeography, 46(2): 291−303.
    [29] Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan JF, Kaufman DM, et al. 2003. Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84(12): 3105−3117. doi: 10.1890/03-8006
    [30] Hu JH, Huang Y, Jiang JP, Guisan A. 2019. Genetic diversity in frogs linked to past and future climate changes on the roof of the world. Journal of Animal Ecology, 88(6): 953−963. doi: 10.1111/1365-2656.12974
    [31] Hu JH, Jiang JP. 2018. Inferring ecological explanations for biogeographic boundaries of parapatric Asian mountain frogs. BMC Ecology, 18(1): 3. doi: 10.1186/s12898-018-0160-5
    [32] Hu JH, Xie F, Li C, Jiang JP. 2011. Elevational patterns of species richness, range and body size for spiny frogs. PLoS ONE, 6(5): e19817. doi: 10.1371/journal.pone.0019817
    [33] Jarzyna MA, Quintero I, Jetz W. 2021. Global functional and phylogenetic structure of avian assemblages across elevation and latitude. Ecology Letters, 24(2): 196−207. doi: 10.1111/ele.13631
    [34] Jetz W, Pyron RA. 2018. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nature Ecology & Evolution, 2(5): 850−858.
    [35] Jiang ZH, Ma KM, Liu HY, Tang ZY. 2018. A trait-based approach reveals the importance of biotic filter for elevational herb richness pattern. Journal of Biogeography, 45(10): 2288−2298. doi: 10.1111/jbi.13398
    [36] Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, et al. 2017. Climatologies at high resolution for the earth's land surface areas. Scientific Data, 4(1): 170122. doi: 10.1038/sdata.2017.122
    [37] Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, et al. 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26(11): 1463−1464. doi: 10.1093/bioinformatics/btq166
    [38] Khatiwada JR, Zhao T, Chen YH, Wang B, Xie F, Cannatella DC, et al. 2019. Amphibian community structure along elevation gradients in eastern Nepal Himalaya. BMC Ecology, 19(1): 19. doi: 10.1186/s12898-019-0234-z
    [39] Kluge J, Kessler M. 2011. Phylogenetic diversity, trait diversity and niches: species assembly of ferns along a tropical elevational gradient. Journal of Biogeography, 38(2): 394−405. doi: 10.1111/j.1365-2699.2010.02433.x
    [40] Körner C. 2000. Why are there global gradients in species richness? Mountains might hold the answer. Trends in Ecology & Evolution, 15(12): 513−514.
    [41] Kraft NJB, Cornwell WK, Webb CO, Ackerly DD. 2007. Trait evolution, community assembly, and the phylogenetic structure of ecological communities. The American Naturalist, 170(2): 271−283. doi: 10.1086/519400
    [42] Laiolo P, Pato J, Obeso JR. 2018. Ecological and evolutionary drivers of the elevational gradient of diversity. Ecology Letters, 21(7): 1022−1032. doi: 10.1111/ele.12967
    [43] Li CL, Zhang Y, Zha DD, Yang S, Huang ZYX, de Boer WF. 2019. Assembly processes of waterbird communities across subsidence wetlands in China: a functional and phylogenetic approach. Diversity and Distributions, 25(7): 1118−1129. doi: 10.1111/ddi.12919
    [44] Li ZY, Shi L. 2007. Plants of Mount Emei. Beijing: Beijing Science and Technology Publishing. (in Chinese)
    [45] Liu CZ. 1950. Amphibians of Western China. Chicago: Chicago Natural History Museum.
    [46] Luo ZH, Wang XY, Yang SF, Cheng XL, Liu Y, Hu JH. 2021. Combining the responses of habitat suitability and connectivity to climate change for an East Asian endemic frog. Frontiers in Zoology, 18(1): 14. doi: 10.1186/s12983-021-00398-w
    [47] MacArthur RH. 1984. Geographical Ecology: Patterns in the Distribution of Species. Princeton, New Jersey: Princeton University Press.
    [48] Mammola S, Carmona CP, Guillerme T, Cardoso P. 2021. Concepts and applications in functional diversity. Functional Ecology, 35(9): 1869−1885. doi: 10.1111/1365-2435.13882
    [49] Mayfield MM, Levine JM. 2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters, 13(9): 1085−1093. doi: 10.1111/j.1461-0248.2010.01509.x
    [50] McCain CM. 2007. Could temperature and water availability drive elevational species richness patterns? A global case study for bats. Global Ecology and Biogeography, 16(1): 1−13. doi: 10.1111/j.1466-8238.2006.00263.x
    [51] McCain CM, Grytnes JA. 2010. Elevational gradients in species richness. In: [Anonymous]. Encyclopedia of Life Sciences (ELS). Chichester: Wiley.
    [52] Miller ET, Farine DR, Trisos CH. 2017. Phylogenetic community structure metrics and null models: a review with new methods and software. Ecography, 40(4): 461−477. doi: 10.1111/ecog.02070
    [53] Montaño-Centellas FA, Loiselle BA, Tingley MW. 2021. Ecological drivers of avian community assembly along a tropical elevation gradient. Ecography, 44(4): 574−588. doi: 10.1111/ecog.05379
    [54] Montaño-Centellas FA, McCain C, Loiselle BA. 2020. Using functional and phylogenetic diversity to infer avian community assembly along elevational gradients. Global Ecology and Biogeography, 29(2): 232−245. doi: 10.1111/geb.13021
    [55] Mori AS, Shiono T, Koide D, Kitagawa R, Ota AT, Mizumachi E. 2013. Community assembly processes shape an altitudinal gradient of forest biodiversity. Global Ecology and Biogeography, 22(7): 878−888. doi: 10.1111/geb.12058
    [56] Naniwadekar R, Vasudevan K. 2007. Patterns in diversity of anurans along an elevational gradient in the Western Ghats, South India. Journal of Biogeography, 34(5): 842−853.
    [57] Nogués-Bravo D, Araújo MB, Romdal T, Rahbek C. 2008. Scale effects and human impact on the elevational species richness gradients. Nature, 453(7192): 216−219. doi: 10.1038/nature06812
    [58] Ochoa-Ochoa LM, Mejía-Domínguez NR, Velasco JA, Marske KA, Rahbek C. 2019. Amphibian functional diversity is related to high annual precipitation and low precipitation seasonality in the New World. Global Ecology and Biogeography, 28(9): 1219−1229. doi: 10.1111/geb.12926
    [59] Pagel M. 1999. Inferring the historical patterns of biological evolution. Nature, 401(6756): 877−884. doi: 10.1038/44766
    [60] Pavoine S, Bonsall MB. 2011. Measuring biodiversity to explain community assembly: a unified approach. Biological Reviews, 86(4): 792−812. doi: 10.1111/j.1469-185X.2010.00171.x
    [61] Perrigo A, Hoorn C, Antonelli A. 2020. Why mountains matter for biodiversity. Journal of Biogeography, 47(2): 315−325. doi: 10.1111/jbi.13731
    [62] Petchey OL, Gaston KJ. 2002. Functional diversity (FD), species richness and community composition. Ecology Letters, 5(3): 402−411. doi: 10.1046/j.1461-0248.2002.00339.x
    [63] Peters MK, Hemp A, Appelhans T, Behler C, Classen A, Detsch F, et al. 2016. Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nature Communications, 7(1): 13736. doi: 10.1038/ncomms13736
    [64] R Core Team. 2019. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
    [65] Rahbek C. 1997. The relationship among area, elevation, and regional species richness in neotropical birds. The American Naturalist, 149(5): 875−902. doi: 10.1086/286028
    [66] Rahbek C, Borregaard MK, Colwell RK, Dalsgaard B, Holt BG, Morueta-Holme N, et al. 2019. Humboldt’s enigma: what causes global patterns of mountain biodiversity?. Science, 365(6458): 1108−1113. doi: 10.1126/science.aax0149
    [67] Santillán V, Quitián M, Tinoco BA, Zárate E, Schleuning M, Böhning-Gaese K, et al. 2019. Different responses of taxonomic and functional bird diversity to forest fragmentation across an elevational gradient. Oecologia, 189(4): 863−873. doi: 10.1007/s00442-018-4309-x
    [68] Song WY, Li XY, Chen ZZ, Li Q, Onditi KO, He SW, et al. 2020. Isolated alpine habitats reveal disparate ecological drivers of taxonomic and functional beta-diversity of small mammal assemblages. Zoological Research, 41(6): 670−683. doi: 10.24272/j.issn.2095-8137.2020.085
    [69] Sutherland WJ, Freckleton RP, Godfray HCJ, Beissinger SR, Benton T, Cameron DD, et al. 2013. Identification of 100 fundamental ecological questions. Journal of Ecology, 101(1): 58−67. doi: 10.1111/1365-2745.12025
    [70] Swenson NG, Enquist BJ. 2007. Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. American Journal of Botany, 94(3): 451−459. doi: 10.3732/ajb.94.3.451
    [71] Tang CQ. 2006. Forest vegetation as related to climate and soil conditions at varying altitudes on a humid subtropical mountain, Mount Emei, Sichuan, China. Ecological Research, 21(2): 174−180. doi: 10.1007/s11284-005-0106-1
    [72] Tilman D. 2001. Functional diversity. In: Levin SA. Encyclopedia of Biodiversity, Vol. 3. San Diego, CA: Academic Press, 109–120.
    [73] Tsianou MA, Kallimanis AS. 2020. Geographical patterns and environmental drivers of functional diversity and trait space of amphibians of Europe. Ecological Research, 35(1): 123−138. doi: 10.1111/1440-1703.12069
    [74] Verschuyl JP, Hansen AJ, McWethy DB, Sallabanks R, Hutto RL. 2008. Is the effect of forest structure on bird diversity modified by forest productivity. Ecological Applications, 18(5): 1155−1170. doi: 10.1890/07-0839.1
    [75] Violle C, Reich PB, Pacala SW, Enquist BJ, Kattge J. 2014. The emergence and promise of functional biogeography. Proceedings of the National Academy of Sciences of the United States of America, 111(38): 13690−13696. doi: 10.1073/pnas.1415442111
    [76] Wang XY, Huang Y, Zhong MJ, Yang SN, Yang X, Jiang JP, et al. 2019. Environmental stress shapes life-history variation in the swelled-vented frog (Feirana quadranus). Evolutionary Ecology, 33(3): 435−448. doi: 10.1007/s10682-019-09980-5
    [77] Wang XY, Yang SN, Guo CP, Tang K, Jiang JP, Hu JH. 2020. Amphibian diversity and conservation along an elevational gradient on Mount Emei, southwestern China. Amphibian & Reptile Conservation, 14(3): 46−56.
    [78] Webb CO, Ackerly DD, McPeek MA, Donoghue MJ. 2002. Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33: 475−505. doi: 10.1146/annurev.ecolsys.33.010802.150448
    [79] Wells KD. 2007. The Ecology and Behavior of Amphibians. Chicago: University of Chicago Press.
    [80] Zhang J, Huang SM, He FL. 2015. Half-century evidence from western Canada shows forest dynamics are primarily driven by competition followed by climate. Proceedings of the National Academy of Sciences of the United States of America, 112(13): 4009−4014. doi: 10.1073/pnas.1420844112
    [81] Zhang R, Zhang ZC, Shang KK, Zhao MS, Kong JX, Wang X, et al. 2021. A taxonomic and phylogenetic perspective on plant community assembly along an elevational gradient in subtropical forests. Journal of Plant Ecology, 14(4): 702−716. doi: 10.1093/jpe/rtab026
    [82] Zhao BL, Chen RH. 1980. Mount Emei. Chengdu: Sichuan People’s Publishing House. (in Chinese)
    [83] Zhao T, Wang B, Shu GC, Li C, Jiang JP. 2018. Amphibian species contribute similarly to taxonomic, but not functional and phylogenetic diversity: inferences from amphibian biodiversity on Emei Mountain. Asian Herpetological Research, 9(2): 110−118.
  • ZR-2021-166-Supplementary Materials.pdf
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  2650
  • HTML全文浏览量:  1279
  • PDF下载量:  394
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-09
  • 录用日期:  2021-11-17
  • 网络出版日期:  2021-11-17
  • 刊出日期:  2022-01-18

目录

    /

    返回文章
    返回