留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Jean P. Boubli, Mareike C. Janiak, Leila M. Porter, Stella de la Torre, Liliana Cortés-Ortiz, Maria N. F. da Silva, Anthony B. Rylands, Stephen Nash, Fabrício Bertuol, Hazel Byrne, Felipe E. Silva, Fabio Rohe, Dorien de Vries, Robin M. D. Beck, Irune Ruiz-Gartzia, Lukas F. K. Kuderna, Tomas Marques-Bonet, Tomas Hrbek, Izeni P. Farias, Anneke H. van Heteren, Christian Roos. Ancient DNA of the pygmy marmoset type specimen Cebuella pygmaea (Spix, 1823) resolves a taxonomic conundrum. Zoological Research, 2021, 42(6): 761-771. doi: 10.24272/j.issn.2095-8137.2021.143
Citation: Jean P. Boubli, Mareike C. Janiak, Leila M. Porter, Stella de la Torre, Liliana Cortés-Ortiz, Maria N. F. da Silva, Anthony B. Rylands, Stephen Nash, Fabrício Bertuol, Hazel Byrne, Felipe E. Silva, Fabio Rohe, Dorien de Vries, Robin M. D. Beck, Irune Ruiz-Gartzia, Lukas F. K. Kuderna, Tomas Marques-Bonet, Tomas Hrbek, Izeni P. Farias, Anneke H. van Heteren, Christian Roos. Ancient DNA of the pygmy marmoset type specimen Cebuella pygmaea (Spix, 1823) resolves a taxonomic conundrum. Zoological Research, 2021, 42(6): 761-771. doi: 10.24272/j.issn.2095-8137.2021.143

模式标本古DNA数据帮助厘定倭狨Cebuella pygmae (Spix, 1823)分类难题

doi: 10.24272/j.issn.2095-8137.2021.143

Ancient DNA of the pygmy marmoset type specimen Cebuella pygmaea (Spix, 1823) resolves a taxonomic conundrum

Funds: This study was supported by the Conselho Nacional de Pesquisa, Brazil (563348/2010), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (3261/2013), NSF (1241066), FAPESP (12/50260-6) and NERC (NE/T000341/1)
More Information
  • 摘要: 作为全球最小的类人猿, 倭狨在西亚马逊分布极广。近期整合分类学研究表明,目前认为的“倭狨”实际代表了两个独立的物种,二者分布以纳波河-索利蒙伊斯河为界,而其目前的两个亚种应提升为有效种。然而,由于倭狨指名亚种的模式产地相较河流的具体位置不明,因此难以确定两个已有学名与演化支系间的具体对应关系。在此,该研究首次提供了倭狨指名亚种模式标本的DNA分子数据,同时提供了模式产地界河两侧个体的线粒体基因组数据。基于上述数据,该研究确定了河流北部的狨猴种群对应真正的倭狨Cebuella pygmae,而河流南部种群则对应新提升有效性的东部倭狨C. niveiventris。结合已有的线粒体细胞色素b数据,研究重新厘定了两种的分布情况,同时推算两种倭狨的分化时间约为2.54百万年前。最后,该研究讨论了分类厘定后种内的近期种群分化,以及两种在河流上游可能存在的接触区域。
  • Figure  1.  Geographical location of all pygmy marmoset samples used in this study

    Black labels represent specimens with C. pygmaea mitochondrial haplotype and red labels represent specimens with C. niveiventris mitochondrial haplotype.

    Figure  2.  Close up map of western Amazonia showing precise locations of samples used in this study collected between the mouth of the Javari and Ucayali rivers, which are both south bank tributaries of the Solimões (Amazonas)

    Figure  3.  BEAST2 cytochrome b time-tree for 65 primate samples, including 52 pygmy marmosets and 13 other taxa as outgroups

    Numbers in nodes correspond to posterior support and error bars represent 95% HPD intervals. Inset is picture of Cebuella pygmaea type and original drawing by von Spix (1823). See Figures 1 and 2 for map showing localities for all specimens used in this phylogenetic analysis. Asterisks mark museum samples that were originally labeled as collected in south of the Amazon and Napo rivers but grouped with C. pygmaea.

    Figure  4.  RAxML phylogenetic tree for mitogenome dataset of 15 samples, including Spix’s pygmaea type

    Numbers at nodes correspond to bootstrap support. See Figures 1 and 2 for map showing all localities for specimens used in this phylogenetic analysis. Drawings by Stephen Nash.

    Figure  5.  Distribution of two species of pygmy marmosets (Cebuella)

    Purple question marks indicate range extension of C. pygmaea as proposed by Porter et al. (2021).

    Figure  6.  Underpart view of Chicago’s Field Museum of Natural History voucher specimen FMNH 54290, Cebuella niveiventris Type “1” (sensu Garbino et al., 2019, photo by J.E.S. Villavicencio)

    Table  1.   List of voucher specimens and tissue samples used in this study and their localities

    Sample IDGenusSpeciesCollection siteLatitudeLongitude
    EC_H1CebuellapygmaeaFlor del Pantano (Group 1), Orellana, Ecuador–0.4517989–76.864899
    EC_H2CebuellapygmaeaFlor del Pantano (Group 3), Orellana, Ecuador–0.4517989–76.864899
    EC_H3CebuellapygmaeaFlor del Pantano (Group 4), Orellana, Ecuador–0.4517989–76.864899
    EC_H4CebuellapygmaeaSan Pablo, Sucumbíos, Ecuador–0.2735964–76.421896
    EC_H5CebuellapygmaeaSan Pablo, Sucumbíos, Ecuador–0.2735964–76.421896
    EC_H6CebuellaniveiventrisTiputini Biological Station, Orellana, Ecuador–0.6381041–76.149596
    AMNH_72033CebuellapygmaeaCuraray, Maynas, Loreto, Peru–2.3667–74.0833
    AMNH_72035CebuellapygmaeaCuraray, Maynas, Loreto, Peru–2.3667–74.0833
    AMNH_72035CebuellapygmaeaCuraray, Maynas, Loreto, Peru–2.3667–74.0833
    AMNH_72037CebuellapygmaeaCuraray, Maynas, Loreto, Peru–2.3667–74.0833
    AMNH_72038CebuellapygmaeaCuraray, Maynas, Loreto, Peru–2.3667–74.0833
    AMNH_73751CebuellaniveiventrisOrosa, Mariscal Ramon Castilla, Loreto, Peru–3.5333–72.1833
    AMNH_74054CebuellaniveiventrisOrosa, Mariscal Ramon Castilla, Loreto, Peru–3.5333–72.1833
    AMNH_74055CebuellaniveiventrisOrosa, Mariscal Ramon Castilla, Loreto, Peru–3.5333–72.1833
    AMNH_74056CebuellaniveiventrisOrosa, Mariscal Ramon Castilla, Loreto, Peru–3.5333–72.1833
    AMNH_74366CebuellapygmaeaApayacu, Maynas, Loreto, Peru–3.4833–72.1833
    AMNH_74367CebuellapygmaeaApayacu, Maynas, Loreto, Peru–3.4833–72.1833
    AMNH_74368CebuellapygmaeaApayacu, Maynas, Loreto, Peru–3.4833–72.1833
    AMNH_74369CebuellapygmaeaApayacu, Maynas, Loreto, Peru–3.4833–72.1833
    AMNH_75280CebuellaniveiventrisSarayacu, Ucayali, Loreto, Peru–6.7833–75.1167
    AMNH_76327CebuellapygmaeaSarayacu, Ucayali, Loreto, Peru–6.7833–75.1167
    AMNH_76328CebuellapygmaeaSarayacu, Ucayali, Loreto, Peru–6.7833–75.1167
    AMNH_98312CebuellapygmaeaIquitos, Maynas, Loreto, Peru–3.7667–73.25
    FMNH_54290CebuellapygmaeaRío Copataza, Pastaza, Ecuador–2.11667–77.449997
    FMNH_71003CebuellapygmaeaLeticia, Amazonas, Colombia–4.15–69.950003
    FMNH_87136CebuellaniveiventrisRío Maniti, Santa Cecilia, Maynas, Peru–3.4333354–72.766674
    FMNH_87137CebuellaniveiventrisRío Maniti, Santa Cecilia, Maynas, Peru–3.4333354–72.766674
    FMNH_88997CebuellaniveiventrisAlto Yavari Mirim, boca Yaque, Mariscal Ramon, Peru–4.4499988–71.783336
    FMNH_88998CebuellaniveiventrisAlto Yavari Mirim, boca Yaque, Mariscal Ramo, Peru–4.4499988–71.783336
    FMNH_122750CebuellaniveiventrisQuistococha, Maynas, Loreto, Peru–3.8333284–73.266669
    FMNH_122752CebuellaniveiventrisQuistococha, Maynas, Loreto, Peru–3.8333284–73.266669
    UMMZ_82856CebuellapygmaeaRío Napo, Intillama, Napo, Ecuador–0.9829959–77.817001
    UMMZ_82857CebuellapygmaeaRío Napo, Intillama, Napo, Ecuador–0.9829959–77.817001
    JAP720CebuellapygmaeaRío Japurá, Amazonas, Brazil–1.8424722–69.022833
    JAP723CebuellapygmaeaRío Japurá, Amazonas, Brazil–1.8424722–69.022833
    JAP724CebuellapygmaeaRío Japurá, Amazonas, Brazil–1.8424722–69.022833
    Tabatinga_01CebuellapygmaeaTabatinga, Amazonas, Brasil–4.241472–69.944472
    Tabatinga_02CebuellapygmaeaTabatinga, Amazonas, Brasil–4.238944–69.944667
    CTGA-M170CebuellaniveiventrisIgarapé do Jacinto, Tapauá, Amazonas, Brazil–5.7–63.2
    FR20CebuellaniveiventrisLago Xadá, Amazonas, Brazil–5.2620278–60.722944
    CCM19CebuellaniveiventrisBenjamin Constant, Amazonas, Brazil–4.382494–70.008512
    MNFS1019CebuellaniveiventrisOcidente, Acre, Brazil–8.5722222–72.8
    MNFS1020CebuellaniveiventrisOcidente, Acre, Brazil–8.5722222–72.8
    MNFS1361CebuellaniveiventrisOcidente, Acre, Brazil–8.5722222–72.8
    CCM23CebuellaniveiventrisCodajas, Amazonas, Brazil–3.894248–62.071256
    CCM251CebuellaniveiventrisLago Matupiri, Río Madeira–5.5986111–61.006944
    JT79CebuellaniveiventrisRío Jutaí, Brazil–3.31174–67.532681
    JT95CebuellaniveiventrisRío Jutaí, Brazil–3.735624–67.469317
    JT57CebuellaniveiventrisRío Jutaí, Brazil–3.218021–67.334289
    JT56CebuellaniveiventrisRío Jutaí, Brazil–3.218021–67.334289
    JT32CebuellaniveiventrisRío Jutaí, Brazil–3.21801–67.334296
    HolotypeCebuellapygmaeaAdjacent to the town of Tabatinga, Brazil
    下载: 导出CSV
  • [1] Boubli JP, Byrne H, da Silva MNF, Silva-Júnior J, Costa Araújo R, Bertuol F, et al. 2019. On a new species of titi monkey (Primates: Plecturocebus Byrne et al., 2016), from Alta Floresta, southern Amazon, Brazil. Molecular Phylogenetics and Evolution, 132: 117−137. doi: 10.1016/j.ympev.2018.11.012
    [2] Boubli JP, da Silva MNF, Rylands AB, Nash SD, Bertuol F, Nunes M, et al. 2018. How many pygmy marmoset (Cebuella Gray, 1870) species are there? A taxonomic re-appraisal based on new molecular evidence. Molecular Phylogenetics and Evolution, 120: 170−182. doi: 10.1016/j.ympev.2017.11.010
    [3] Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A, et al. 2019. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 15(4): e1006650. doi: 10.1371/journal.pcbi.1006650
    [4] Bouckaert RR, Drummond AJ. 2017. bModelTest: bayesian phylogenetic site model averaging and model comparison. BMC Evolutionary Biology, 17(1): 42. doi: 10.1186/s12862-017-0890-6
    [5] Burrell AS, Disotell TR, Bergey CM. 2015. The use of museum specimens with high-throughput DNA sequencers. Journal of Human Evolution, 79: 35−44. doi: 10.1016/j.jhevol.2014.10.015
    [6] Byrne H, Costa-Araújo R, Farias IP, Silva MNF, Messias M, Hrbek T, et al. 2021. Uncertainty regarding species delimitation, geographic distribution, and evolutionary history of titi monkey species (Plecturocebus, Pitheciidae) from southwestern Amazonia. International Journal of Primatology: in press
    [7] Chan KO, Hutter CR, Wood Jr PL, Grismer LL, Das I, Brown RM. 2020. Gene flow creates a mirage of cryptic species in a Southeast Asian spotted stream frog complex. Molecular Ecology, 29(20): 3970−3987. doi: 10.1111/mec.15603
    [8] da Cruz Lima E. 1945. Mammals of Amazonia. 1. General introduction and primates. Museu Paraense Emilio Goeldi de Historia Natural e Etnografia.
    [9] Dabney J, Knapp M, Glocke I, Gansauge MT, Weihmann A, Nickel B, et al. 2013. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proceedings of the National Academy of Sciences of the United States of America, 110(39): 15758−15763. doi: 10.1073/pnas.1314445110
    [10] Farias IP, Santos WG, Gordo M, Hrbek T. 2015. Effects of forest fragmentation on genetic diversity of the critically endangered primate, the pied tamarin (Saguinus bicolor): implications for conservation. Journal of Heredity, 106(Suppl1): 512−521.
    [11] Garbino GST, Casali DM, Nascimento FO, Serrano-Villavicencio JE. 2019. Taxonomy of the pygmy marmoset (Cebuella Gray, 1866): geographic variation, species delimitation, and nomenclatural notes. Mammalian Biology, 95: 135−142. doi: 10.1016/j.mambio.2018.09.003
    [12] Garcia-Erill G, Kjaer MM, Albrechtsen A, Siegismund HR, Heller R. 2021. Vicariance followed by secondary gene flow in a young gazelle species complex. Molecular Ecology, 30(2): 528−544. doi: 10.1111/mec.15738
    [13] Green RE, Krause J, Ptak SE, Briggs AW, Ronan MT, Simons JF, et al. 2006. Analysis of one million base pairs of Neanderthal DNA. Nature, 444(7117): 330−336. doi: 10.1038/nature05336
    [14] Groves CP. 2001. Primate Taxonomy. Washington DC: Smithsonian Institution Press.
    [15] Groves CP. 2005. Order primates. In: Wilson DE, Reeder DM. Mammal Species of the World: A Taxonomic and Geographic Reference. Baltimore, MD: Johns Hopkins University Press.
    [16] Haven Wiley R. 2010. Alfonso Olalla and his family: the ornithological exploration of Amazonian Peru. Bulletin of the American Museum of Natural History, 2010(343): 1−68.
    [17] Hershkovitz P. 1977. Living New World Monkeys (Platyrrhini) with An Introduction to Primates, Vol. 1. Chicago: University of Chicago Press.
    [18] Higuchi R, Bowman B, Freiberger M, Ryder OA, Wilson AC. 1984. DNA sequences from the quagga, an extinct member of the horse family. Nature, 312(5991): 282−284. doi: 10.1038/312282a0
    [19] Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30(4): 772−780. doi: 10.1093/molbev/mst010
    [20] Kay RF. 2015. Biogeography in deep time–what do phylogenetics, geology, and paleoclimate tell us about early platyrrhine evolution?. Molecular Phylogenetics and Evolution, 82: 358−374. doi: 10.1016/j.ympev.2013.12.002
    [21] Lamichhaney S, Han F, Webster MT, Grant BR, Grant PR, Andersson L. 2020. Female-biased gene flow between two species of Darwin’s finches. Nature Ecology & Evolution, 4(7): 979−986.
    [22] Lönnberg E. 1940. Notes on marmosets. Arkiv für Zoologi, 32A(10): 1−22.
    [23] Marsh LK. 2014. A taxonomic revision of the saki monkeys, Pithecia Desmarest, 1804. Neotropical Primates, 21(1): 1−165. doi: 10.1896/044.021.0101
    [24] Mittermeier RA, Wilson DE, Rylands AB. 2013. Handbook of the Mammals of the World: Primates. Barcelona: Lynx Edicions.
    [25] Moritz C. 1994. Defining ‘Evolutionarily Significant Units’ for conservation. Trends in Ecology & Evolution, 9(10): 373−375.
    [26] Naka LN, Bechtoldt CL, Henriques LMP, Brumfield RT. 2012. The role of physical barriers in the location of avian suture zones in the Guiana Shield, northern Amazonia. The American Naturalist, 179(4): E115−E132. doi: 10.1086/664627
    [27] Napier PH. 1976. Catalogue of Primates in the British Museum (Natural History). Part I: Families Callithricidae and Cebidae. London: British Museum (Natural History).
    [28] Noonan JP, Coop G, Kudaravalli S, Smith D, Krause J, Alessi J, et al. 2006. Sequencing and analysis of Neanderthal genomic DNA. Science, 314(5802): 1113−1118. doi: 10.1126/science.1131412
    [29] Orlando L, Metcalf JL, Alberdi MT, Telles-Antunes M, Bonjean D, Otte M, et al. 2009. Revising the recent evolutionary history of equids using ancient DNA. Proceedings of the National Academy of Sciences of the United States of America, 106(51): 21754−21759. doi: 10.1073/pnas.0903672106
    [30] Pääbo S. 1985. Molecular cloning of Ancient Egyptian mummy DNA. Nature, 314(6012): 644−645. doi: 10.1038/314644a0
    [31] Perri AR, Mitchell KJ, Mouton A, Álvarez-Carretero S, Hulme-Beaman A, Haile J, et al. 2021. Dire wolves were the last of an ancient New World canid lineage. Nature, 591(7848): 87−91. doi: 10.1038/s41586-020-03082-x
    [32] Porter LM, de la Torre S, Pérez-Peña P, Cortés-Ortiz L. 2021. Taxonomic diversity of Cebuella in the western Amazon: molecular, morphological and pelage diversity of museum and free-ranging specimens. American Journal of Physical Anthropology, 175(1): 251−267. doi: 10.1002/ajpa.24266
    [33] Prüfer K, Racimo F, Patterson N, Jay F, Sankararaman S, Sawyer S, et al. 2014. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature, 505(7481): 43−49. doi: 10.1038/nature12886
    [34] Rambaut A, Ho SYW, Drummond AJ, Shapiro B. 2009. Accommodating the effect of ancient DNA damage on inferences of demographic histories. Molecular Biology and Evolution, 26(2): 245−248. doi: 10.1093/molbev/msn256
    [35] Rohland N, Siedel H, Hofreiter M. 2004. Nondestructive DNA extraction method for mitochondrial DNA analyses of museum specimens. BioTechniques, 36(5): 814−821. doi: 10.2144/04365ST05
    [36] Roos C, Helgen KM, Miguez RP, Thant NML, Lwin N, Lin AK, et al. 2020. Mitogenomic phylogeny of the Asian colobine genus Trachypithecus with special focus on Trachypithecus phayrei (Blyth, 1847) and description of a new species. Zoological Research, 41(6): 656−669. doi: 10.24272/j.issn.2095-8137.2020.254
    [37] Rylands AB, Coimbra-Filho AF, Mittermeier RA. 2009. The systematics and distributions of the marmosets (Callithrix, Callibella, Cebuella, and Mico) and callimico (Callimico) (Callitrichidae, Primates). In: Ford SM, Porter LM, Davis LC. The Smallest Anthropoids: The Marmoset/Callimico Radiation. Boston, MA: Springer, 25–61.
    [38] Sambrook J, Fritsch EF, Maniatis T. 1989. In vitro amplification of DNA by the polymerase chain reaction. In: Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1431–1435.
    [39] Scheel DM, Slater GJ, Kolokotronis SO, Potter CW, Rotstein DS, Tsangaras K, et al. 2014. Biogeography and taxonomy of extinct and endangered monk seals illuminated by ancient DNA and skull morphology. ZooKeys, 409: 1−33. doi: 10.3897/zookeys.409.6244
    [40] Seiffert ER. 2006. Revised age estimates for the later Paleogene mammal faunas of Egypt and Oman. Proceedings of the National Academy of Sciences of the United States of America, 103(13): 5000−5005. doi: 10.1073/pnas.0600689103
    [41] Shepherd LD, Tennyson AJD, Lambert DM. 2013. Using ancient DNA to enhance museum collections: a case study of rare Kiwi (Apteryx spp. ) specimens. Journal of the Royal Society of New Zealand, 43(3): 119−127. doi: 10.1080/03036758.2012.732585
    [42] Soini P. 1988. The pygmy marmoset, Genus Cebuella. In: Mittermeier RA, Rylands AB, Coimbra-Filho AF, da Fonseca GAB. Ecology and Behavior of Neotropical Primates. Vol. 2. Washington, DC: World Wildlife Fund, 79–129.
    [43] Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9): 1312−1313. doi: 10.1093/bioinformatics/btu033
    [44] Swofford DL. 2002. PAUP*: Phylogenetic Analysis Using Parsimony, Version 4.0 b10. Sunderland, MA: Sinauer Associates.
    [45] van Roosmalen MGM, van Roosmalen T. 1997. An eastern extension of the geographical range of the pygmy marmoset. Cebuella pygmaea. Neotropical Primates, 5: 3−6.
    [46] Verry AJF, Scarsbrook L, Scofield RP, Tennyson AJD, Weston KA, Robertson BC, et al. 2019. Who, where, what, wren? Using ancient DNA to examine the veracity of museum specimen data: a case study of the New Zealand rock wren (Xenicus gilviventris). Frontiers in Ecology and Evolution, 7: 496. doi: 10.3389/fevo.2019.00496
    [47] von Spix JB. 1823. Simiarum et Vespertilionum Brasiliensium Species Novae. Munich: F. S. Hübschmann.
    [48] von Spix JB, von Martius KFP. 1824. Travels in Brazil, in the Years 1817-1820: Undertaken by Command of His Majesty the King of Bavaria. London: Longman, Hurst, Rees, Orme, Brown, and Green.
    [49] Weir JT, Faccio MS, Pulido-Santacruz P, Barrera-Guzmán AO, Aleixo A. 2015. Hybridization in headwater regions, and the role of rivers as drivers of speciation in Amazonian birds. Evolution, 69(7): 1823−1834. doi: 10.1111/evo.12696
    [50] Werle E, Schneider C, Renner M, Völker M, Fiehn W. 1994. Convenient single-step, one tube purification of PCR products for direct sequencing. Nucleic Acids Research, 22(20): 4354−4355. doi: 10.1093/nar/22.20.4354
  • ZR-2021-143 Supplementary Materials.zip
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  1843
  • HTML全文浏览量:  810
  • PDF下载量:  200
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-20
  • 录用日期:  2021-10-08
  • 网络出版日期:  2021-10-12
  • 刊出日期:  2021-11-18

目录

    /

    返回文章
    返回