留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Diversifying on the Ark: multiple new endemic lineages of dwarf geckos from the Western Ghats provide insights into the systematics and biogeography of South Asian Cnemaspis (Reptilia: Squamata)

Saunak Pal Zeeshan A. Mirza Princia Dsouza Kartik Shanker

Saunak Pal, Zeeshan A. Mirza, Princia Dsouza, Kartik Shanker. Diversifying on the Ark: multiple new endemic lineages of dwarf geckos from the Western Ghats provide insights into the systematics and biogeography of South Asian Cnemaspis (Reptilia: Squamata). Zoological Research, 2021, 42(6): 675-691. doi: 10.24272/j.issn.2095-8137.2021.074
Citation: Saunak Pal, Zeeshan A. Mirza, Princia Dsouza, Kartik Shanker. Diversifying on the Ark: multiple new endemic lineages of dwarf geckos from the Western Ghats provide insights into the systematics and biogeography of South Asian Cnemaspis (Reptilia: Squamata). Zoological Research, 2021, 42(6): 675-691. doi: 10.24272/j.issn.2095-8137.2021.074

印度西高止山脉东虎属Cnemaspis(爬行纲: 有鳞目)特有新物种揭示该属分类及生物地理学特性

doi: 10.24272/j.issn.2095-8137.2021.074

Diversifying on the Ark: multiple new endemic lineages of dwarf geckos from the Western Ghats provide insights into the systematics and biogeography of South Asian Cnemaspis (Reptilia: Squamata)

Funds: This study was supported by the Critical Ecosystem Partnership Fund (Western Ghats), DBT-IISc Partnership Programme and Ministry of Environment, Forests, and Climate Change (MoEFCC), Singinawa Conservation Foundation, and Rufford Small Grant
More Information
  • 摘要: 先前的研究表明,物种多样性极高的东虎属Cnemaspis未形成单系,其中包括了3个亲缘关系较远且地理上相互隔离的支系,分别分布于非洲、南亚和东南亚。目前,东虎属南亚支系包含85个已知物种,而新物种的数量随着野外调查和分类学研究的开展而迅速增加。近期的研究充分揭示了东虎属南亚支系的物种多样性与演化历史,但大多数研究都缺乏对东虎属物种多样性最为丰富的西高止山脉的广泛采样。该研究补充了西高止山脉的野外采样,并查阅博物馆馆藏标本,对西高止山脉分布的多个已知种进行了系统性描述并补充了其自然生活史资料。同时,该文描述了东虎属南亚支系的12个新物种,其中10种为西高止山脉特有种。此外,研究将本属的南亚支系细分为10个可以通过形态、地理分布区域和系统演化数据鉴别的高支持率亚支。时间校准的系统演化树和祖先地重建分析显示,东虎属南亚支系起源于古新世的西高止山脉区域,对其演化历史与生物地理学研究提供了启示。众多特有新物种和高度分化支系的发现进一步凸显了西高止山脉对蜥蜴演化的重要性。
  • Figure  1.  Map of Peninsular India showing type localities of extant species of Cnemaspis

    Star denotes new species identified in this study; color corresponds to distinct clades (see details in Figure 2). Arrows indicate major geographical barriers in WG (black: Goa Gap, white: Palghat Gap, and red: Shencottah Gap).

    Figure  2.  ML phylogeny illustrating relationships within SA Cnemaspis based on concatenated mitochondrial 16S and ND2 dataset

    Values along nodes are posterior probabilities (BPP) based on Bayesian analysis followed by ultra-fast bootstraps (UF) of ML analysis. Solid circles represent nodes supported by BPP and UF values >0.95 and >95, respectively; “- -” indicates unresolved relationships. Lineages described in this study are marked by stars. Clades are named, represented by vertical specific-colored bars, and denoted with Roman numerals (CL I–X). Photos: representative species of each clade from Peninsular India; Photos by Saunak Pal.

    Figure  3.  Coloration in life of all 12 holotypes

    A: Cnemaspis balerion sp. nov.; B: Cnemaspis lithophilis sp. nov.; C: Cnemaspis rubraoculus sp. nov.; D: Cnemaspis nimbus sp. nov.; E: Cnemaspis wallaceii sp. nov.; F: Cnemaspis smaug sp. nov.; G: Cnemaspis regalis sp. nov.; H: Cnemaspis galaxia sp. nov.; I: Cnemaspis nigriventris sp. nov.; J: Cnemaspis flavigularis sp. nov.; K: Cnemaspis palanica sp. nov.; L: Cnemaspis jackieii sp. nov.. Photos by Saunak Pal.

    Figure  4.  Geographical ancestral area reconstruction of time-calibrated phylogeny of SA Cnemaspis produced using RASP, showing most likely ancestral areas

    Maps at nodes show relative position of Indian plate at that time. Inset on top left shows color codes for ranges of species. See Supporting Material (Figures S3, S4) for RASP phylogeny tree with all possible ancestral ranges at nodes and lineage-through-time plot. “*” denotes separation by Shencottah Gap, “~” for east-west separation, and “+” for separation by Goa Gap). Photo by Saunak Pal.

    Figure  5.  Micro-CT images of male paratype CESL 513 Cnemaspis galaxia sp. nov.

    A: Dorsal view of skull; B: Lateral view of skull; C: Dorsal view of pelvic girdle; D: Ventral close up of pelvic girdle showing pair of cloacal bones. asnp: ascending nasal process of premaxilla, cor: coronoid, d: dentary, ept: epipterygoid, ep: epipubis, f: frontal, fe: femur, il: ilium, j: jugal, mf: mental foramen, mx: maxilla, mx.fp: facial process of maxilla, mx.pp: posterior process of maxilla, n: nasal, of: obturator foramen, par: parietal, pb: pubis, pc: post cloacal bone, pmx: premaxilla, pof: postorbitofrontal, prf: prefrontal, pt: pterygoid, q: quadrate, ri: ribs, sq: squamosal, vert: vertebrae.

    Table  1.   Major diagnostic characters of Cnemaspis clades from Peninsular India

    wynadensis Clade (CL I)beddomei Clade
    (CL II)
    littoralis Clade
    (CL III)
    indica Clade
    (CL IV)
    bangara Clade
    (CL V)
    DistributionNWGs, CWGsSWGsCWGs, SWGshigh elv of CWGsEGs, Mysore plateau
    Body sizeMedium to large; stoutMedium to large; stoutSmall to medium; slenderSmall to mediumMedium; slender
    Dorsal pholidosisHomogenous or heterogenousHeterogenousHomogenousHomogenousHeterogenous
    Spine-like tubercles on flankAbsentAbsentFew, often present, scatteredFew, small, subconical; absent in C. indicaAbsent
    Femoral PoresPresent (except C. kolhapurensis which has series of precloacal-femoral pores)AbsentPresent; more than 10 on each sidePresentPresent
    Precloacal PoresAbsentPresentAbsentAbsentPresent
    Tubercles forming whorls on tailAbsentPresent or absentPresent or absent; when present reducedAbsentPresent; only on few anterior rows
    Postcloacal tubercleMostly absent; if present, small, reducedPresent, distinctOften present; small, reducedPresent, distinctPresent
    Sub-caudalsSmoothSmoothSmoothSmoothSmooth
    Median sub-caudal scale rowProminently enlargedProminently enlargedProminently enlargedProminently enlargedProminently enlarged
    girii Clade (CL VI)goaensis Clade
    (CL VII)
    gracilis Clade
    (CL VIII)
    mysorensis Clade
    (CL IX)
    monticola Clade
    (CL X)
    DistributionNWGsNWGsCWGs, SWGs, EGs, Mysore plateauMysore plateauCWGs, SWGs
    Body sizeSmall to medium; slenderSmall to medium; slenderSmall to medium; slenderSmall to mediumSmall to medium; slender
    Dorsal pholidosisHeterogenousHeterogenousHeterogenousHeterogenousHeterogenous
    Spine-like tubercles on flankAbsentPresentAbsentAbsentPresent
    Femoral PoresPresentPresentPresentPresent (except C. avasabinae)Present
    Precloacal PoresAbsentPresentPresentPresentPresent
    Tubercles forming whorls on tailAbsentPresentPresentPresentPresent
    Postcloacal tubercleMostly present, smallPresentPresentPresentPresent
    Sub-caudalsSmoothSmooth or weakly keeledSmoothSmoothSmooth or keeled
    Median sub-caudal scale rowNot enlargedSlightly enlargedProminently enlargedNot to slightly enlargedEnlarged
    NWGs: Northern Western Ghats; CWGs: Southern Western Ghats; EGs: Eastern Ghats.
    下载: 导出CSV
  • [1] Agarwal I, Bauer AM, Jackman TR, Karanth KP. 2014. Insights into Himalayan biogeography from geckos: A molecular phylogeny of Cyrtodactylus (Squamata: Gekkonidae). Molecular Phylogenetics and Evolution, 80: 145−155. doi: 10.1016/j.ympev.2014.07.018
    [2] Agarwal I, Bauer AM, Pal S, Srikanthan AN, Khandekar A. 2020a. Two more new Hemiphyllodactylus bleeker, 1860 (Squamata: Gekkonidae) from Tamil Nadu, India. Zootaxa, 4729(2): 249−265. doi: 10.11646/zootaxa.4729.2.6
    [3] Agarwal I, Biswas S, Bauer AM, Greenbaum E, Jackman TR, De Silva A, et al. 2017. Cryptic species, taxonomic inflation, or a bit of both? New species phenomenon in Sri Lanka as suggested by a phylogeny of dwarf geckos (Reptilia, Squamata, Gekkonidae, Cnemaspis). Systematics and Biodiversity, 15(5): 427−439. doi: 10.1080/14772000.2017.1282553
    [4] Agarwal I, Karanth KP. 2015. A phylogeny of the only ground-dwelling radiation of Cyrtodactylus (Squamata, Gekkonidae): diversification of Geckoella across peninsular India and Sri Lanka. Molecular Phylogenetics and Evolution, 82: 193−199. doi: 10.1016/j.ympev.2014.09.016
    [5] Agarwal I, Khandekar A, Giri VB, Ramakrishnan U, Karanth KP. 2019. The hills are alive with geckos! A radiation of a dozen species on sky islands across peninsular India (Squamata: Gekkonidae, Hemiphyllodactylus) with the description of three new species. Organisms Diversity & Evolution, 19(2): 341−361.
    [6] Agarwal I, Thackeray T, Pal S, Khandekar A. 2020b. Granite boulders act as deep-time climate refugia: A Miocene divergent clade of rupicolous Cnemaspis Strauch, 1887 (Squamata: Gekkonidae) from the Mysore Plateau, India, with descriptions of three new species. Journal of Zoological Systematics and Evolutionary Research, 58(4): 1234−1261. doi: 10.1111/jzs.12391
    [7] Ali JR, Aitchison JC. 2008. Gondwana to Asia: Plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166–35 Ma). Earth-Science Reviews, 88(3–4): 145−166.
    [8] Aljanabi SM, Martinez I. 1997. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Research, 25(22): 4692−4693. doi: 10.1093/nar/25.22.4692
    [9] Bansal R, Karanth KP. 2013. Phylogenetic analysis and molecular dating suggest that Hemidactylus anamallensis is not a member of the Hemidactylus radiation and has an ancient late Cretaceous origin. PLoS ONE, 8(5): e60615. doi: 10.1371/journal.pone.0060615
    [10] Beddome RH. 1870. Description of some new Lizards from the Madras Presidency. The Madras Monthly Journal of Medical Science, 1: 30−35.
    [11] Biju SD, Garg S, Gururaja KV, Shouche Y, Walujkar SA. 2014a. DNA barcoding reveals unprecedented diversity in Dancing Frogs of India (Micrixalidae, Micrixalus): a taxonomic revision with description of 14 new species. Ceylon Journal of Science (Biological Sciences), 43(1): 37−123. doi: 10.4038/cjsbs.v43i1.6850
    [12] Biju SD, Garg S, Mahony S, Wijayathilaka N, Senevirathne G, Meegaskumbura M. 2014b. DNA barcoding, phylogeny and systematics of Golden-backed frogs (Hylarana, Ranidae) of the Western Ghats-Sri Lanka biodiversity hotspot, with the description of seven new species. Contributions to Zoology, 83(4): 269−335. doi: 10.1163/18759866-08304004
    [13] Bossuyt F, Meegaskumbura M, Beenaerts N, Gower DJ, Pethiyagoda R, Roelants K, et al. 2004. Local endemism within the Western Ghats-Sri Lanka biodiversity hotspot. Science, 306(5695): 479−481. doi: 10.1126/science.1100167
    [14] Briggs JC. 2003. The biogeographic and tectonic history of India. Journal of Biogeography, 30(3): 381−388. doi: 10.1046/j.1365-2699.2003.00809.x
    [15] Britz R, Dahanukar N, Anoop VK, Philip S, Clark B, Raghavan R, et al. 2020. Aenigmachannidae, a new family of snakehead fishes (Teleostei: Channoidei) from subterranean waters of South India. Scientific Reports, 10: 16081. doi: 10.1038/s41598-020-73129-6
    [16] Chaitanya R, Giri VB, Deepak V, Datta-Roy A, Murthy BHCK, Karanth P. 2019. Diversification in the mountains: a generic reappraisal of the Western Ghats endemic gecko genus Dravidogecko Smith, 1933 (Squamata: Gekkonidae) with descriptions of six new species. Zootaxa, 4688(1): 1−56. doi: 10.11646/zootaxa.4688.1.1
    [17] Cyriac VP, Johny A, Umesh P, Palot MJ, Campbell PD. 2019. Rediscovery of Cnemaspis nilagirica Manamendra-Arachchi, Batuwita and Pethiyagoda, 2007 (Squamata: Gekkonidae) from Kerala, India with notes on morphology and distribution. Zootaxa, 4586(1): 98−108. doi: 10.11646/zootaxa.4586.1.4
    [18] Cyriac VP, Johny A, Umesh PK, Palot MJ. 2018. Description of two new species of Cnemaspis Strauch, 1887 (Squamata: Gekkonidae) from the Western Ghats of Kerala, India. Zootaxa, 4459(1): 85−100. doi: 10.11646/zootaxa.4459.1.3
    [19] Cyriac VP, Kodandaramaiah U. 2017. Paleoclimate determines diversification patterns in the fossorial snake family Uropeltidae Cuvier, 1829. Molecular Phylogenetics and Evolution, 116: 97−107. doi: 10.1016/j.ympev.2017.08.017
    [20] Cyriac VP, Palot MJ, Deuti K, Umesh PK. 2020. A preliminary 16S rRNA phylogeny of the Indian Cnemaspis Strauch, 1887 (Squamata: Gekkonidae) with the description of two new cryptic species from the C. wynadensis clade. Vertebrate Zoology, 70(2): 171−193.
    [21] Cyriac VP, Umesh PK. 2013. Current status of Cnemaspis littoralis (Jerdon, 1853) (Sauria: Gekkonidae) with designation of a neotype. Taprobanica, 5(1): 36−43. doi: 10.4038/tapro.v5i1.5660
    [22] Cyriac VP, Umesh PK. 2014. Description of a new ground-dwelling Cnemaspis strauch, 1887 (Squamata: Gekkonidae), From Kerala, allied to C. wynadensis (Beddome, 1870). Russian Journal of Herpetology, 21(3): 187−194.
    [23] Das I, Bauer AM. 2000. Two new species of Cnemaspis (Sauria: Gekkonidae) from Tamil Nadu, southern India. Russian Journal of Herpetology, 7(1): 17−28.
    [24] Datta-Roy A, Karanth KP. 2009. The Out-of-India hypothesis: What do molecules suggest?. Journal of Biosciences, 34: 687−697. doi: 10.1007/s12038-009-0057-8
    [25] Deepak V, Ruane S, Gower DJ. 2018. A new subfamily of fossorial colubroid snakes from the Western Ghats of peninsular India. Journal of Natural History, 52(45-46): 2919−2934. doi: 10.1080/00222933.2018.1557756
    [26] Dinesh KP, Vijayakumar SP, Ramesh V, Jayarajan A, Chandramouli SR, Shanker K. 2020. A deeply divergent lineage of Walkerana (Anura: Ranixalidae) from the Western Ghats of Peninsular India. Zootaxa, 4729(2): 266−276. doi: 10.11646/zootaxa.4729.2.7
    [27] Evans SE. 2008. The skull of lizards and tuatara. In: Gans C, Gaunt AS, Adler K. Biology of the Reptilia, Volume 20, The Skull of Lepidosauria. Ithaca, New York: Society for the Study of Amphibians and Reptiles, 1–347.
    [28] Gamble T, Greenbaum E, Jackman TR, Russell AP, Bauer AM. 2012. Repeated origin and loss of adhesive toepads in geckos. PLoS ONE, 7(6): e39429. doi: 10.1371/journal.pone.0039429
    [29] Ganesh SR, Sreekar R, Pal SP, Ramchandra G, Srinivasulu C, Srinivasulu B. 2011. CEPF Western Ghats Special Series: Discovery and first description of male Cnemaspis heteropholis Bauer, 2002 (Reptilia: Gekkonidae) from Agumbe, central Western Ghats, India. Journal of Threatened Taxa, 3(8): 2023−2027. doi: 10.11609/JoTT.o2614.2023-7
    [30] Garg S, Biju SD. 2019. Author Correction: New microhylid frog genus from Peninsular India with Southeast Asian affinity suggests multiple Cenozoic biotic exchanges between India and Eurasia. Scientific Reports, 9: 12663. doi: 10.1038/s41598-019-48631-1
    [31] Giri VB, Agarwal I, Bauer AM. 2009a. Designation of a neotype for Cnemaspis mysoriensis (Jerdon 1853) (Sauria: Gekkonidae), with a redescription and notes on its distribution and habitat. Russian Journal of Herpetology, 16(4): 256−264.
    [32] Giri VB, Bauer AM, Gaikwad KS. 2009b. A new ground-dwelling species of Cnemaspis Strauch (Squamata: Gekkonidae) from the northern Western Ghats, Maharashtra, India. Zootaxa, 2164: 49−60. doi: 10.11646/zootaxa.2164.1.5
    [33] Grismer LL, Wood Jr PL, Anuar S, Riyanto A, Ahmad N, Muin MA, et al. 2014. Systematics and natural history of Southeast Asian Rock Geckos (genus Cnemaspis Strauch, 1887) with descriptions of eight new species from Malaysia, Thailand, and Indonesia. Zootaxa, 3880(1): 1−147. doi: 10.11646/zootaxa.3880.1.1
    [34] Hanken J, Wassersug R. 1981. The visible skeleton: a new double-stain technique reveals the nature of the “hard” tissues. Functional Photography, 16(4): 22−26, 44.
    [35] Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP. 2001. Bayesian inference of phylogeny and its impact on evolutionary biology. Science, 294(5550): 2310−2314. doi: 10.1126/science.1065889
    [36] Ivany LC, Patterson WP, Lohmann KC. 2000. Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene boundary. Nature, 407(6806): 887−890. doi: 10.1038/35038044
    [37] Jerdon TC. 1853. Catalogue of reptiles inhabiting the Peninsula of India. The Journal of the Asiatic Society of Bengal, 22: 522−534.
    [38] Jha CS, Dutt CBS, Bawa KS. 2000. Deforestation and land use changes in Western Ghats, India. Current Science, 79(2): 231−238.
    [39] Joshi J, Karanth P. 2013. Did southern Western Ghats of peninsular India serve as refugia for its endemic biota during the Cretaceous volcanism?. Ecology and Evolution, 3(10): 3275−3282.
    [40] Karunarathna S, Bauer AM, De Silva A, Surasinghe T, Somaratna L, Madawala M, et al. 2019a. Description of a new species of the genus Cnemaspis Strauch, 1887 (Reptilia: Squamata: Gekkonidae) from the Nilgala Savannah forest, Uva Province of Sri Lanka. Zootaxa, 4545(3): 389−407. doi: 10.11646/zootaxa.4545.3.4
    [41] Karunarathna S, Poyarkov NA, De Silva A, Botejue M, Gorin VA, Surasinghe T, et al. 2019b. Integrative taxonomy reveals six new species of day geckos of the genus Cnemaspis Strauch, 1887 (Reptilia: Squamata: Gekkonidae) from geographically-isolated hill forests in Sri Lanka. Vertebrate Zoology, 69(3): 247−298.
    [42] Khandekar A. 2019. A new species of rock-dwelling Cnemaspis Strauch, 1887 (Squamata: Gekkonidae) from Tamil Nadu, southern India. Zootaxa, 4571(3): 383−397. doi: 10.11646/zootaxa.4571.3.6
    [43] Khandekar A, Gaitonde N, Agarwal I. 2019a. Two new Cnemaspis Strauch, 1887 (Squamata: Gekkonidae) from the Shevaroy massif, Tamil Nadu, India, with a preliminary ND2 phylogeny of Indian Cnemaspis. Cnemaspis. Zootaxa, 4609(1): 68−100. doi: 10.11646/zootaxa.4609.1.3
    [44] Khandekar A, Thackeray T, Agarwal I. 2019b. Two more new species of Cnemaspis Strauch, 1887 (Squamata: Gekkonidae) from the northern Western Ghats, Maharashtra, India. Zootaxa, 4656(1): 43−70. doi: 10.11646/zootaxa.4656.1.2
    [45] Khandekar A, Thackeray T, Agarwal I. 2020a. A new cryptic Cnemaspis Strauch (Squamata: Gekkonidae) from an isolated granite hill on the Mysore Plateau, Karnataka, India. Zootaxa, 4845(4): 509−528. doi: 10.11646/zootaxa.4845.4.3
    [46] Khandekar A, Thackeray T, Pal S, Agarwal I. 2020b. A new large-bodied, rupicolous Cnemaspis Strauch, 1887 (Squamata: Gekkonidae) allied to Cnemaspis heteropholis Bauer, 2002 from the Central Western Ghats of Karnataka, India. Zootaxa, 4801(1): 57−84. doi: 10.11646/zootaxa.4801.1.2
    [47] Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7): 1870−1874. doi: 10.1093/molbev/msw054
    [48] Lajmi A, Karanth PK. 2020. Eocene–Oligocene cooling and the diversification of Hemidactylus geckos in Peninsular India. Molecular Phylogenetics and Evolution, 142: 106637. doi: 10.1016/j.ympev.2019.106637
    [49] Lanfear R, Calcott B, Ho SYW, Guindon S. 2012. PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29(6): 1695−1701. doi: 10.1093/molbev/mss020
    [50] Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. 2016. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34(3): 772−773.
    [51] Leary S, Underwood W, Anthony R, Cartner S, Corey D, Grandin T, et al. 2013. AVMA Guidelines for the Euthanasia of Animals: 2013 Edition. Schaumburg: American Veterinary Medical Association.
    [52] Lee JL, Miller AH, Zug GR, Mulcahy DG. 2019. The discovery of Rock Geckos Cnemaspis Strauch, 1887 (Squamata: Gekkonidae) in the Tanintharyi Region, Myanmar with the description of two new species. Zootaxa, 4661(1): 40−64. doi: 10.11646/zootaxa.4661.1.2
    [53] Macey JR, Larson A, Ananjeva NB, Fang Z, Papenfuss TJ. 1997. Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome. Molecular Biology and Evolution, 14(1): 91−104. doi: 10.1093/oxfordjournals.molbev.a025706
    [54] Mallik AK, Achyuthan NS, Ganesh SR, Pal SP, Vijayakumar SP, Shanker K. 2019. Discovery of a deeply divergent new lineage of vine snake (Colubridae: Ahaetuliinae: Proahaetulla gen. nov.) from the southern Western Ghats of Peninsular India with a revised key for Ahaetuliinae. PLoS ONE, 14(7): e0218851. doi: 10.1371/journal.pone.0218851
    [55] Mallik AK, Srikanthan AN, Pal SP, D’Souza PM, Shanker K, Ganesh SR. 2020. Disentangling vines: a study of morphological crypsis and genetic divergence in vine snakes (Squamata: Colubridae: Ahaetulla) with the description of five new species from Peninsular India. Zootaxa, 4874(1): 1−62. doi: 10.11646/zootaxa.4874.1.1
    [56] Manamendra-Arachchi K, Batuwita S, Pethiyagoda R. 2007. A taxonomic revision of the Sri Lankan day-geckos (Reptilia: Gekkonidae: Cnemaspis), with description of new species from Sri Lanka and southern India. Zeylanica, 7(1): 9−122.
    [57] Mani MS. 1974. Biogeographical evolution in India. In: Mani MS. Ecology and Biogeography in India. Dordrecht: Springer, 698–724.
    [58] Miller MA, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the 2010 Gateway Computing Environments Workshop (GCE). New Orleans, LA, USA: IEEE, 1–8.
    [59] Minh BQ, Nguyen MAT, Von Haeseler A. 2013. Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution, 30(5): 1188−1195. doi: 10.1093/molbev/mst024
    [60] Mirza ZA, Gowande GG, Patil R, Ambekar M, Patel H. 2018. First appearance deceives many: disentangling the Hemidactylus triedrus species complex using an integrated approach. PeerJ, 6: e5341. doi: 10.7717/peerj.5341
    [61] Mirza ZA, Pal S, Bhosale HS, Sanap RV. 2014. A new species of gecko of the genus Cnemaspis Strauch, 1887 from the Western Ghats, India. Zootaxa, 3815(4): 494−506. doi: 10.11646/zootaxa.3815.4.2
    [62] Mukherjee D, Bhupathy S, Nixon AMA. 2005. A new species of day gecko (Squamata, Gekkonidae, Cnemaspis) from the Anaikatti Hills, Western Ghats, Tamil Nadu, India. Current Science, 89(8): 1326−1328.
    [63] Murthy BHC, Nitesh A, Sengupta S, Deepak P. 2019. A new species of Day Gecko of the genus Cnemaspis Strauch, 1887 (Squamata: Gekkonidae) from the Nilgiri Hills, Tamil Nadu, India. Records of the Zoological Survey of India, 119(3): 211−226.
    [64] Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature, 403(6772): 853−858. doi: 10.1038/35002501
    [65] Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1): 268−274. doi: 10.1093/molbev/msu300
    [66] Pal S, Vijayakumar SP, Shanker K, Jayarajan A, Deepak V. 2018. A systematic revision of Calotes Cuvier, 1817 (Squamata: Agamidae) from the Western Ghats adds two genera and reveals two new species. Zootaxa, 4482(3): 401−450. doi: 10.11646/zootaxa.4482.3.1
    [67] Prasad V, Farooqui A, Tripathi SKM, Garg R, Thakur B. 2009. Evidence of late Palaeocene-early eocene equatorial rain forest refugia in southern Western Ghats, India. Journal of Biosciences, 34(5): 777−797. doi: 10.1007/s12038-009-0062-y
    [68] Rambaut A, Suchard MA, Xie D, Drummond AJ. 2014. Tracer v1. 6. Retrived from http://beast.bio.ed.ac.uk/software/tracer/.
    [69] Reddy CS, Dutta K, Jha CS. 2013. Analysing the gross and net deforestation rates in India. Current Science, 105(11): 1492−1500.
    [70] Robin VV, Vishnudas CK, Gupta P, Rheindt FE, Hooper DM, Ramakrishnan U, et al. 2017. Two new genera of songbirds represent endemic radiations from the Shola Sky Islands of the Western Ghats, India. BMC Evolutionary Biology, 17: 31. doi: 10.1186/s12862-017-0882-6
    [71] Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, et al. 2012. Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3): 539−542. doi: 10.1093/sysbio/sys029
    [72] Samant B, Mohabey DM. 2009. Palynoflora from Deccan volcano-sedimentary sequence (Cretaceous-Palaeogene transition) of central India: implications for spatio-temporal correlation. Journal of Biosciences, 34(5): 811−823. doi: 10.1007/s12038-009-0064-9
    [73] Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor, New York, USA: Cold Spring Harbor Laboratory Press.
    [74] Sayyed A, Cyriac VP, Dileepkumar R. 2020. A new cryptic species of Cnemaspis Strauch, 1887 (Squamata: Gekkonidae) in the C. littoralis complex, from Anakkal, Palakkad, Kerala, India. Amphibian & Reptile Conservation, 14(3): 31−45.
    [75] Sayyed A, Grismer LL, Campbell PD, Dileepkumar R. 2019. Description of a cryptic new species of Cnemaspis Strauch, 1887 (Squamata: Gekkonidae) from the Western Ghats of Kerala State of India. Zootaxa, 4656(3): 501−514. doi: 10.11646/zootaxa.4656.3.7
    [76] Sayyed A, Pyron RA, Dahanukar N. 2016. Cnemaspis flaviventralis, a new species of gecko (Squamata: Gekkonidae) from the Western Ghats of Maharashtra, India. Journal of Threatened Taxa, 8(14): 9619−9629. doi: 10.11609/jott.2599.8.14.9619-9629
    [77] Sayyed A, Pyron RA, Dileepkumar R. 2018. Four new species of the genus Cnemaspis Strauch, 1887 (Sauria: Gekkonidae) from the northern Western Ghats, India. Amphibian & Reptile Conservation, 12: 1−29.
    [78] Scherz MD, Daza JD, Köhler J, Vences M, Glaw F. 2017. Off the scale: A new species of fish-scale gecko (Squamata: Gekkonidae: Geckolepis) with exceptionally large scales. PeerJ, 5: e2955. doi: 10.7717/peerj.2955
    [79] Seto KC, Güneralp B, Hutyra LR. 2012. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences of the United States of America, 109(40): 16083−16088. doi: 10.1073/pnas.1211658109
    [80] Shanker K, Vijayakumar SP, Ganeshaiah KN. 2017. Unpacking the species conundrum: philosophy, practice and a way forward. Journal of Genetics, 96(3): 413−430. doi: 10.1007/s12041-017-0800-0
    [81] Simon C, Franke A, Martin A. 1991. The Polymerase Chain Reaction: DNA Extraction and Amplification. In: Hewitt GM, Johnston AWB, Young JPW. Molecular Techniques in Taxonomy. NATO ASI Series (Series H: Cell Biology), vol 57. Berlin, Heidelberg: Springer, 329–355.
    [82] Srinivasulu C, Kumar GC, Srinivasulu B. 2015. A new species of Cnemaspis (Sauria: Gekkonidae) from Northern Karnataka, India. Zootaxa, 3947(1): 85−98. doi: 10.11646/zootaxa.3947.1.5
    [83] Theobald W. 1876. Descriptive Catalogue of the Reptiles of British India. Calcutta: Thacker, Spink and Co..
    [84] Uetz P, Freed P, Hošek J. 2020. The Reptile Database. Retrived from: http://www.reptile-database.org.
    [85] van Bocxlaer I, Biju SD, Willaert B, Giri VB, Shouche YS, Bossuyt F. 2012. Mountain-associated clade endemism in an ancient frog family (Nyctibatrachidae) on the Indian subcontinent. Molecular Phylogenetics and Evolution, 62(3): 839−847. doi: 10.1016/j.ympev.2011.11.027
    [86] Vijayakumar SP, Dinesh KP, Prabhu MV, Shanker K. 2014. Lineage delimitation and description of nine new species of bush frogs (Anura: Raorchestes, Rhacophoridae) from the Western Ghats Escarpment. Zootaxa, 3893(4): 451−488. doi: 10.11646/zootaxa.3893.4.1
    [87] Vijayakumar SP, Menezes RC, Jayarajan A, Shanker K. 2016. Glaciations, gradients, and geography: Multiple drivers of diversification of bush frogs in the western ghats escarpment. Proceedings of the Royal Society B:Biological Sciences, 283(1836): 20161011. doi: 10.1098/rspb.2016.1011
    [88] Vijayakumar SP, Pyron RA, Dinesh KP, Torsekar VR, Srikanthan AN, Swamy P, et al. 2019. A new ancient lineage of frog (Anura: Nyctibatrachidae: Astrobatrachinae subfam. nov.) endemic to the Western Ghats of Peninsular India. PeerJ, 7: e6457. doi: 10.7717/peerj.6457
    [89] Wilcox TP, Zwickl DJ, Heath TA, Hillis DM. 2002. Phylogenetic relationships of the dwarf boas and a comparison of Bayesian and bootstrap measures of phylogenetic support. Molecular Phylogenetics and Evolution, 25(2): 361−371. doi: 10.1016/S1055-7903(02)00244-0
    [90] Yu Y, Harris AJ, Blair C, He XJ. 2015. RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Molecular Phylogenetics and Evolution, 87: 46−49. doi: 10.1016/j.ympev.2015.03.008
    [91] Zhang D, Gao FL, Jakovlić I, Zou H, Zhang J, Li WX, et al. 2020. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources, 20(1): 348−355. doi: 10.1111/1755-0998.13096
    [92] Zhang JJ, Kapli P, Pavlidis P, Stamatakis A. 2013. A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29(22): 2869−2876. doi: 10.1093/bioinformatics/btt499
  • ZR-2021-074 Supplementary Materials.pdf
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  4722
  • HTML全文浏览量:  2275
  • PDF下载量:  756
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-07
  • 录用日期:  2021-09-22
  • 网络出版日期:  2021-09-23
  • 刊出日期:  2021-11-18

目录

    /

    返回文章
    返回