-
摘要: 肌间刺(intermuscular bones,IBs)是仅存在于低等硬骨鱼类肌肉中的细长的线形骨骼, 由肌腱组织通过膜内骨化形成。虽然肌间刺在鱼类游泳过程中发挥重要作用,但是在人类食用过程中会导致潜在的卡喉咙的风险,尤其不方便儿童的食用,这也进一步影响了水产业的经济效益。该文综合阐述了肌间刺的形态发生和功能、相关发育分子机制、肌间刺不同研究方法,以及用于培育无肌间刺鱼类品系的相关技术。该综述揭示了许多与肌间刺发育相关的关键基因,它们主要参与肌腱发育、成骨细胞分化和骨形成发育,如scxa、msxC、sost、twist、bmps和osterix基因。因此,该文对如何利用基因组编辑和人工选育等办法培育无肌间刺的鱼类品系提供了有价值的信息。Abstract: Intermuscular bones (IBs) are slender linear bones embedded in muscle, which ossify from tendons through a process of intramembranous ossification, and only exist in basal teleosts. IBs are essential for fish swimming, but they present a choking risk during human consumption, especially in children, which can lead to commercial risks that have a negative impact on the aquaculture of these fish. In this review, we discuss the morphogenesis and functions of IBs, including their underlying molecular mechanisms, as well as the advantages and disadvantages of different methods for IB studies and techniques for breeding and generating IB-free fish lines. This review reveals that the many key genes involved in tendon development, osteoblast differentiation, and bone formation, e.g., scxa, msxC, sost, twist, bmps, and osterix, also play roles in IB development. Thus, this paper provides useful information for the breeding of new fish strains without IBs via genome editing and artificial selection.
-
Table 1. Number of IBs in different species
Superorder/Subdivision Species Common name in English Sample size (n) Total IB number (n) Average IB number (n) References Osteoglossomorpha Osteoglossum bicirrhosum Arawana 1 70 70 Lv et al., 2007 Elopomorpha Muraenesox cinereus Daggertooth pike conger 2 405–413 409 Lv et al., 2007 Anguilla japonica Japanese eel 3 351–360 357 Yao et al., 2014 Clupeomorpha Coilia ectenes Japanese grenadier anchovy 1 221 221 Lv et al., 2007 Tenualosa reevesii Reeves shad 3 133–152 143 Lv et al., 2007 Ostariophysi Myxocyprinus asiaticus Chinese sucker 3 98–102 100 Lv et al., 2007 Cyprinus carpio Common carp 3 93–101 99 Lv et al., 2007 Hypophthalmichthys molitrix Silver carp 3 123–124 123 Lv et al., 2007 Hypophthalmichthys nobilis Bighead carp 3 114–116 115 Lv et al., 2007 Culter alburnus Topmouth culter 3 129–141 133 Lv et al., 2007 Ctenopharyngodon idellus Grass carp 3 113–124 117 Lv et al., 2007 Hemibarbus labeo Barbel steed 3 122–128 124 Lv et al., 2007 Cyprinus carpio haematopterus Yellow river carp 3 93–104 98 Chen et al., 2017a Cyprinus carpio var. color Oujiang color common carp 5 86–90 89 Lv et al., 2014 Megalobrama amblycephala Blunt snout bream 29 108–129 119 Wan et al., 2014 Carassius auratus Crucian carp 15 78–83 81 Li et al., 2013 Sinocyclocheilus grahami Golden-line barbel 36 100–114 No recorded Yang et al., 2015 Piaractus brachypomus Pirapitinga 3 76–83 81 Lv et al., 2007 Misgurnus anguillicaudatus Pond loach 3 99–113 108 Lv et al., 2007 Carassius auratus gibelio Prussian carp 10 79–87 83 Dong et al., 2006 Pelteobagrus fulvidraco Yellow catfish 3 8 8 Lv et al., 2007 Acanthopterygii Monopterus albus Asian swamp eel 5–10 180–188 No recorded Nie et al., 2018 -
[1] Aizawa R, Yamada A, Seki T, Tanaka J, Nagahama R, Ikehata M, et al. 2019. Cdc42 regulates cranial suture morphogenesis and ossification. Biochemical and Biophysical Research Communications, 512(2): 145−149. doi: 10.1016/j.bbrc.2019.02.106 [2] Akiyama H, Chaboissier MC, Martin JF, Schedl A, De Crombrugghe B. 2002. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes & Development, 16(21): 2813−2828. [3] Bassett JHD, Logan JG, Boyde A, Cheung MS, Evans H, Croucher P, et al. 2012. Mice lacking the calcineurin inhibitor Rcan2 have an isolated defect of osteoblast function. Endocrinology, 153(7): 3537−3548. doi: 10.1210/en.2011-1814 [4] Beck-Cormier S, Lelliott CJ, Logan JG, Lafont DT, Merametdjian L, Leitch VD, et al. 2019. Slc20a2, encoding the phosphate transporter PiT2, Is an important genetic determinant of bone quality and strength. Journal of Bone and Mineral Research, 34(6): 1101−1114. doi: 10.1002/jbmr.3691 [5] Bendall AJ, Abate-Shen C. 2000. Roles for Msx and Dlx homeoproteins in vertebrate development. Gene, 247(1-2): 17−31. doi: 10.1016/S0378-1119(00)00081-0 [6] Bhushan R, Grünhagen J, Becker J, Robinson PN, Ott CE, Knaus P. 2013. miR-181a promotes osteoblastic differentiation through repression of TGF-β signaling molecules. The International Journal of Biochemistry & Cell Biology, 45(3): 696−705. [7] Bing Z. 1962. On the myoseptal spines of the carp (Cyprinus carpio L.). Acta Zoologica Sinica, 14(2): 175−179. (in Chinese) [8] Cao DC, Kuang YY, Zheng XH, Tong GX, Li CT, Sun XW. 2015. Comparative analysis of intermuscular bones in three strains of common carp. Journal of Applied Ichthyology, 31(1): 32−36. doi: 10.1111/jai.12483 [9] Celil AB, Campbell PG. 2005. BMP-2 and insulin-like growth Factor-I mediate Osterix (Osx) expression in human Mesenchymal stem cells via the MAPK and protein Kinase D signaling pathways. Journal of Biological Chemistry, 280(36): 31353−31359. doi: 10.1074/jbc.M503845200 [10] Chakrapani V, Patra SK, Panda RP, Rasal KD, Jayasankar P, Barman HK. 2016. Establishing targeted carp TLR22 gene disruption via homologous recombination using CRISPR/Cas9. Developmental & Comparative Immunology, 61: 242−247. [11] Chen G, Xiong L, Wang YM, He LB, Huang R, Liao LJ, et al. 2018. ITGB1b-deficient rare minnows delay grass carp reovirus (GCRV) entry and attenuate GCRV-triggered apoptosis. International Journal of Molecular Sciences, 19(10): 3175. doi: 10.3390/ijms19103175 [12] Chen GJ, Tang QM, Yu SL, Xie YN, Sun JW, Li S, et al. 2020. The biological function of BMAL1 in skeleton development and disorders. Life Sciences, 253: 117636. doi: 10.1016/j.lfs.2020.117636 [13] Chen HL, Wang J, Du JX, Si ZX, Yang H, Xu XD, et al. 2019. ASIP disruption via CRISPR/Cas9 system induces black patches dispersion in Oujiang color common carp. Aquaculture, 498: 230−235. doi: 10.1016/j.aquaculture.2018.08.057 [14] Chen J, Chen XL, Huang X, Huang GH, Gao ZX, Wang WM, et al. 2021a. Genome-wide analysis of intermuscular bone development reveals changes of key genes expression and signaling pathways in blunt snout bream (Megalobrama amblycephala). Genomics, 113(1): 654−663. doi: 10.1016/j.ygeno.2020.09.062 [15] Chen J, Lv YP, Dai QM, Zhang L, Yang LY. 2021b. Molecular characterization of two twist genes in barbel steed (Hemibarbus labeo) and their relationship with intermuscular bone development. Journal of Fisheries of China, 45(4): 489−496. (in Chinese) [16] Chen L, Tian X, Mi JL, Huang XQ, Wang L, Dong CJ, et al. 2017a. Developmental and morphological study of intermuscular bones in Cyprinus carpio haematopterus. Journal of Shanghai Ocean University, 26(4): 481−489. (in Chinese) [17] Chen L, Tian X, Mi JL, Huang XQ, Wang L, Dong CJ, et al. 2017b. Developmental and morphological study of intermuscular bones in Cyprinus carpio haematopterus. Journal of Shanghai Ocean University, 26(4): 481−489. (in Chinese) [18] Danos N, Ward AB. 2012. The homology and origins of intermuscular bones in fishes: phylogenetic or biomechanical determinants?. Biological Journal of the Linnean Society, 106(3): 607−622. doi: 10.1111/j.1095-8312.2012.01893.x [19] Dong ZJ, Huang DZ, Li LJ, Yuan XH, Miao WM, Chen QQ, et al. 2006. Preliminary study on intermuscular bones of several cultured cyprinids. Journal of Shanghai Fisheries University, 15(4): 425−429. (in Chinese) [20] Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, et al. 2008. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nature Biotechnology, 26(6): 702−708. doi: 10.1038/nbt1409 [21] FAO. 2020. The State of World Fisheries and Aquaculture 2020. Rome: Sustainability in action. [22] Fiedler IAK, Zeveleva S, Duarte A, Zhao X, Depalle B, Cardoso L, et al. 2019. Microstructure, mineral and mechanical properties of teleost intermuscular bones. Journal of Biomechanics, 94: 59−66. doi: 10.1016/j.jbiomech.2019.07.009 [23] Fine ML, Lin H, Nguyen BB, Rountree RA, Cameron TM, Parmentier E. 2007. Functional morphology of the sonic apparatus in the fawn cusk-eel Lepophidium profundorum (Gill, 1863). Journal of Morphology, 268(11): 953−966. doi: 10.1002/jmor.10551 [24] Funato N, Chapman SL, McKee MD, Funato H, Morris JA, Shelton JM, et al. 2009. Hand2 controls osteoblast differentiation in the branchial arch by inhibiting DNA binding of Runx2. Development, 136(4): 615−625. doi: 10.1242/dev.029355 [25] Gaj T, Gersbach CA, Barbas III CF. 2013. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnology, 31(7): 397−405. doi: 10.1016/j.tibtech.2013.04.004 [26] Gemballa S, Britz R. 1998. Homology of intermuscular bones in acanthomorph fishes. American Museum Novitates, (3241): 1−25. [27] Gilbert SF, Barresi MJF. 2016. Developmental Biology. 11th ed. Sunderland, Massachusetts USA: Sinauer Associates, Inc. [28] Göllner H, Dani C, Phillips B, Philipsen S, Suske G. 2001. Impaired ossification in mice lacking the transcription factor Sp3. Mechanisms of Development, 106(1-2): 77−83. doi: 10.1016/S0925-4773(01)00420-8 [29] Gotesman M, Soliman H, Besch R, El-Matbouli M. 2015. Inhibition of spring viraemia of carp virus replication in an Epithelioma papulosum cyprini cell line by RNAi. Journal of Fish Diseases, 38(2): 197−207. doi: 10.1111/jfd.12227 [30] Hatta M, Yoshimura Y, Deyama Y, Fukamizu A, Suzuki K. 2006. Molecular characterization of the zinc finger transcription factor, Osterix. International Journal of Molecular Medicine, 17(3): 425−430. [31] Havens BA, Velonis D, Kronenberg MS, Lichtler AC, Oliver B, Mina M. 2008. Roles of FGFR3 during morphogenesis of Meckel's cartilage and mandibular bones. Developmental Biology, 316(2): 336−349. doi: 10.1016/j.ydbio.2008.01.035 [32] Hirsch P. 1938. Les arêtes dans le poisson d'étang. Bulletin Français de Pisciculture, 114: 36−39. [33] Hong SHH, Lu XH, Nanes MS, Mitchell J. 2009. Regulation of osterix (Osx, Sp7) and the Osx promoter by parathyroid hormone in osteoblasts. Journal of Molecular Endocrinology, 43(5): 197−207. doi: 10.1677/JME-09-0012 [34] Huang P, Xiao A, Zhou MG, Zhu ZY, Lin S, Zhang B. 2011. Heritable gene targeting in zebrafish using customized TALENs. Nature Biotechnology, 29(8): 699−700. doi: 10.1038/nbt.1939 [35] Huang YY, Meng T, Wang SZ, Zhang H, Mues G, Qin CL, et al. 2014. Twist1- and Twist2-haploinsufficiency results in reduced bone formation. PLoS One, 9(6): e99331. doi: 10.1371/journal.pone.0099331 [36] Hwang WY, Fu YF, Reyon D, Maeder ML, Tsai SQ, Sander JD, et al. 2013. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology, 31(3): 227−229. doi: 10.1038/nbt.2501 [37] Javed A, Chen HY, Ghori FY. 2010. Genetic and transcriptional control of bone formation. Oral and Maxillofacial Surgery Clinics of North America, 22(3): 283−293. doi: 10.1016/j.coms.2010.05.001 [38] Jiang SW, Shen QW. 2019. Principles of gene editing techniques and applications in animal husbandry. 3 Biotech, 9(1): 28. doi: 10.1007/s13205-018-1563-x [39] Jiang Z, Von Den Hoff JW, Torensma R, Meng LY, Bian Z. 2014. Wnt16 is involved in intramembranous ossification and suppresses osteoblast differentiation through the Wnt/β-catenin pathway. Journal of Cellular Physiology, 229(3): 384−392. doi: 10.1002/jcp.24460 [40] Jochum W, David JP, Elliott C, Wutz A, Plenk Jr H, Matsuo K, et al. 2000. Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nature Medicine, 6(9): 980−984. doi: 10.1038/79676 [41] Kaback LA, Soung DY, Naik A, Geneau G, Schwarz EM, Rosier RN, et al. 2008. Teriparatide (1-34 human PTH) regulation of Osterix during fracture repair. Journal of Cellular Biochemistry, 105(1): 219−226. doi: 10.1002/jcb.21816 [42] Kague E, Hughes SM, Lawrence EA, Cross S, Martin-Silverstone E, Hammond CL, et al. 2019. Scleraxis genes are required for normal musculoskeletal development and for rib growth and mineralization in zebrafish. The FASEB Journal, 33(8): 9116−9130. doi: 10.1096/fj.201802654RR [43] Karsenty G, Wagner EF. 2002. Reaching a genetic and molecular understanding of skeletal development. Developmental Cell, 2(4): 389−406. doi: 10.1016/S1534-5807(02)00157-0 [44] Ke ZH, Zhang W, Jiang Y, Bao BL. 2008. Developmental morphology of the intermuscular bone in Hypophthalmichthys molitrix. Chinese Journal of Zoology, 43(6): 88−96. (in Chinese) [45] Knight LC, Lesser TH. 1989. Fish bones in the throat. Emergency Medicine Journal, 6(1): 13−16. doi: 10.1136/emj.6.1.13 [46] Koga T, Matsui Y, Asagiri M, Kodama T, De Crombrugghe B, Nakashima K, et al. 2005. NFAT and Osterix cooperatively regulate bone formation. Nature Medicine, 11(8): 880−885. doi: 10.1038/nm1270 [47] Kossmann H. 1972. Untersuchungen über die genetische Varianz der Zwischenmuskelgräten des Karpfens. Theoretical and Applied Genetics, 42(3): 130−135. doi: 10.1007/BF00583415 [48] Krebs JE, Goldstein ES, Kilpatrick ST. 2018. Lewin's Genes XII. 12th ed. Burlington: Jones & Bartlett Learning. [49] Lecanda F, Warlow PM, Sheikh S, Furlan F, Steinberg TH, Civitelli R. 2000. Connexin43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunction. The Journal of Cell Biology, 151(4): 931−944. doi: 10.1083/jcb.151.4.931 [50] Lee MH, Kwon TG, Park HS, Wozney JM, Ryoo HM. 2003. BMP-2-induced Osterix expression is mediated by Dlx5 but is independent of Runx2. Biochemical and Biophysical Research Communications, 309(3): 689−694. doi: 10.1016/j.bbrc.2003.08.058 [51] Lee SY, Park KH, Yu HG, Kook E, Song WH, Lee G, et al. 2019. Controlling hypoxia-inducible factor-2α is critical for maintaining bone homeostasis in mice. Bone Research, 7: 14. doi: 10.1038/s41413-019-0054-y [52] Lenton K, James AW, Manu A, Brugmann SA, Birker D, Nelson ER, et al. 2011. Indian hedgehog positively regulates calvarial ossification and modulates bone morphogenetic protein signaling. Genesis, 49(10): 784−796. doi: 10.1002/dvg.20768 [53] Li L, Cserjesi P, Olson EN. 1995. Dermo-1: a novel twist-related bHLH protein expressed in the developing dermis. Developmental Biology, 172(1): 280−292. doi: 10.1006/dbio.1995.0023 [54] Li L, Zhong ZZ, Zeng M, Liu SJ, Zhou Y, Xiao J, et al. 2013. Comparative analysis of intermuscular bones in fish of different ploidies. Science China Life Sciences, 56(4): 341−350. doi: 10.1007/s11427-013-4465-5 [55] Li YX, Farrell MJ, Liu RP, Mohanty N, Kirby ML. 2000. Double-stranded RNA injection produces null phenotypes in zebrafish. Developmental Biology, 217(2): 394−405. doi: 10.1006/dbio.1999.9540 [56] Li Z, Zhou L, Wang ZW, Li XY, Zhang XJ, Wang Y, et al. 2017. Comparative analysis of intermuscular bones between clone A+ and clone F strains of allogynogenetic gibel carp. Acta Hydrobiologica Sinica, 41(4): 860−869. (in Chinese) [57] Lian JB, Stein GS, Van Wijnen AJ, Stein JL, Hassan MQ, Gaur T, et al. 2012. MicroRNA control of bone formation and homeostasis. Nature Reviews Endocrinology, 8(4): 212−227. doi: 10.1038/nrendo.2011.234 [58] Lieder U. 1961. Wieviel Gräten haben unsere Süßwasserfische?. Deutsche Fischerei-Zeitung, 8: 334−338. [59] Liu H, Chen CH, Gao ZX, Min JM, Gu YM, Jian JB, et al. 2017. The draft genome of blunt snout bream (Megalobrama amblycephala) reveals the development of intermuscular bone and adaptation to herbivorous diet. GigaScience, 6(7): gix039. [60] Liu QF, Qi YH, Liang QL, Song J, Liu JM, Li WH, et al. 2019. Targeted disruption of tyrosinase causes melanin reduction in Carassius auratus cuvieri and its hybrid progeny. Science China Life Sciences, 62(9): 1194−1202. doi: 10.1007/s11427-018-9404-7 [61] Lu XH, Beck Jr GR, Gilbert LC, Camalier CE, Bateman NW, Hood BL, et al. 2011. Identification of the homeobox protein Prx1 (MHox, Prrx-1) as a regulator of osterix expression and mediator of tumor necrosis factor α action in osteoblast differentiation. Journal of Bone and Mineral Research, 26(1): 209−219. doi: 10.1002/jbmr.203 [62] Lund R. 1966. Intermuscular bones in pholidophorus bechei from the lower lias of England. Science, 152(3720): 348−349. doi: 10.1126/science.152.3720.348 [63] Lv YP, Bao BL, Jiang Y, Yang LL, Li JL. 2007. Comparative analysis of intermuscular bones in lower teleosts. Journal of Fisheries of China, 31(5): 661−668. (in Chinese) [64] Lv YP, Chen J, Bao BL, Huang PP. 2012. The ossificational process of the intermuscular bones in Hemibarbus labeo. Journal of Shanghai Ocean University, 21(4): 549−553. (in Chinese) [65] Lv YP, Yao WJ, Chen J, Bao BL. 2015. Newly identified gene muscle segment homeobox C may play a role in intermuscular bone development of Hemibarbus labeo. Genetics and Molecular Research, 14(3): 11324−11334. doi: 10.4238/2015.September.22.26 [66] Lv YP, Zhou CC, Yang LM, Bao BL. 2014. Ossification pattern of the intermuscular bone in Cyprinus carpio var. color. Journal of Shanghai Ocean University, 23(1): 58−63. (in Chinese) [67] Ma J, Fan YD, Zhou Y, Liu WZ, Jiang N, Zhang JM, et al. 2018. Efficient resistance to grass carp reovirus infection in JAM-A knockout cells using CRISPR/Cas9. Fish & Shellfish Immunology, 76: 206−215. [68] Maehata Y, Takamizawa S, Ozawa S, Kato Y, Sato S, Kubota E, et al. 2006. Both direct and collagen-mediated signals are required for active vitamin D3-elicited differentiation of human osteoblastic cells: roles of osterix, an osteoblast-related transcription factor. Matrix Biology, 25(1): 47−58. doi: 10.1016/j.matbio.2005.09.001 [69] Marofi F, Vahedi G, Solali S, Alivand M, Salarinasab S, Heydarabad MZ, et al. 2019. Gene expression of TWIST1 and ZBTB16 is regulated by methylation modifications during the osteoblastic differentiation of mesenchymal stem cells. Journal of Cellular Physiology, 234(5): 6230−6243. doi: 10.1002/jcp.27352 [70] McLarren KW, Lo R, Grbavec D, Thirunavukkarasu K, Karsenty G, Stifani S. 2000. The mammalian basic helix loop helix protein HES-1 binds to and modulates the transactivating function of the runt-related factor Cbfa1. The Journal of Biological Chemistry, 275(1): 530−538. doi: 10.1074/jbc.275.1.530 [71] Miyama K, Yamada G, Yamamoto TS, Takagi C, Miyado K, Sakai M, et al. 1999. A BMP-inducible gene, Dlx5, regulates osteoblast differentiation and mesoderm induction. Developmental Biology, 208(1): 123−133. doi: 10.1006/dbio.1998.9197 [72] Moav R, Finkel A, Wohlfarth G. 1975. Variability of intermuscular bones, vertebrae, ribs, dorsal fin rays and skeletal disorders in the common carp. Theoretical and Applied Genetics, 46(1): 33−43. doi: 10.1007/BF00264753 [73] Murakami T, Saito A, Hino SI, Kondo S, Kanemoto S, Chihara K, et al. 2009. Signalling mediated by the endoplasmic reticulum stress transducer OASIS is involved in bone formation. Nature Cell Biology, 11(10): 1205−1211. doi: 10.1038/ncb1963 [74] Nakashima K, De Crombrugghe B. 2003. Transcriptional mechanisms in osteoblast differentiation and bone formation. Trends in Genetics, 19(8): 458−466. doi: 10.1016/S0168-9525(03)00176-8 [75] Nie CH, Chen ZX, Dai CJ, Wan SM, Gao ZX. 2018. Ossification patterns of intermuscular bones in different fish species. Acta Hydrobiologica Sinica, 42(1): 131−137. (in Chinese) [76] Nie CH, Hilsdorf AWS, Wan SM, Gao ZX. 2020. Understanding the development of intermuscular bones in teleost: status and future directions for aquaculture. Reviews in Aquaculture, 12(2): 759−772. doi: 10.1111/raq.12348 [77] Nie CH, Wan SM, Chen YL, Zhu DJ, Wang XD, Dong XR, et al. 2021. Loss of scleraxis leads to distinct reduction of mineralized intermuscular bone in zebrafish. Aquaculture and Fisheries, 6(2): 169−177. doi: 10.1016/j.aaf.2020.04.006 [78] Nie CH, Wan SM, Liu YL, Liu H, Wang WM, Gao ZX. 2019. Development of teleost intermuscular bones undergoing intramembranous ossification based on histological-transcriptomic-proteomic data. International Journal of Molecular Sciences, 20(19): 4698. doi: 10.3390/ijms20194698 [79] Nunes JRS, Pértille F, Andrade SCS, Perazza CA, Villela PMS, Almeida-Val VMF, et al. 2020. Genome-wide association study reveals genes associated with the absence of intermuscular bones in tambaqui (Colossoma macropomum). Animal Genetics, 51(6): 899−909. doi: 10.1111/age.13001 [80] Padovano JD, Ramachandran A, Bahmanyar S, Ravindran S, George A. 2014. Bone-specific overexpression of DMP1 influences osteogenic gene expression during endochondral and intramembranous ossification. Connective Tissue Research, 55(S1): 121−124. [81] Patterson C, Johnson GD. 1995. Intermuscular Bones and Ligaments of Teleostean Fishes. Washington, DC: Smithsonlan Institution Press. [82] Perazza CA, De Menezes JTB, Ferraz JBS, Pinaffi FLV, Silva LA, Hilsdorf AWS. 2017. Lack of intermuscular bones in specimens of Colossoma macropomum: an unusual phenotype to be incorporated into genetic improvement programs. Aquaculture, 472: 57−60. doi: 10.1016/j.aquaculture.2016.05.014 [83] Perrien DS, Brown EC, Aronson J, Skinner RA, Montague DC, Badger Jr TM, et al. 2002. Immunohistochemical study of osteopontin expression during distraction osteogenesis in the rat. Journal of Histochemistry & Cytochemistry, 50(4): 567−574. [84] Qin LJ, Ding DX, Cui LL, Huang QY. 2013. Expression and regulation of the SOST gene. Hereditas, 35(8): 939−947. (in Chinese) [85] Rosenblum JS, Maggio D, Pang Y, Nazari MA, Gonzales MK, Lechan RM, et al. 2019. Chiari Malformation Type 1 in EPAS1-Associated Syndrome. International Journal of Molecular Sciences, 20(11): 2819. doi: 10.3390/ijms20112819 [86] Sabatakos G, Sims NA, Chen J, Aoki K, Kelz MB, Amling M, et al. 2000. Overexpression of ΔFosB transcription factor(s) increases bone formation and inhibits adipogenesis. Nature Medicine, 6(9): 985−990. doi: 10.1038/79683 [87] Sengbusch RV, Meske C. 1967. Auf dem Wege zum grätenlosen Karpfen. Der Züchter, 37(6): 271−274. [88] Sengbusch RV. 1967. Eine Schnellbestimmungsmethode der Zwischenmuskelgräten bei Karpfen zur Auslese von?grätenfreien “Mutanten (mit Röntgen-Fernsehkamera und Bildschirmgerät). Der Züchter, 37(6): 275−276. [89] Si ZX, Chen HL, Xu XD, Wang J, Wang CH. 2020. Effect of Dct on pigmentation patterns in Oujiang color common carp. Journal of Fishery Sciences of China, 27(6): 605−612. (in Chinese) [90] Sinha KM, Yasuda H, Coombes MM, Dent SYR, De Crombrugghe B. 2010. Regulation of the osteoblast-specific transcription factor Osterix by NO66, a Jumonji family histone demethylase. The EMBO Journal, 29(1): 68−79. doi: 10.1038/emboj.2009.332 [91] Sinha KM, Zhou X. 2013. Genetic and molecular control of osterix in skeletal formation. Journal of Cellular Biochemistry, 114(5): 975−984. doi: 10.1002/jcb.24439 [92] Su SY, Dong ZJ. 2018. Comparative expression analyses of bone morphogenetic protein 4 (BMP4) expressions in muscles of tilapia and common carp indicate that BMP4 plays a role in the intermuscular bone distribution in a dose-dependent manner. Gene Expression Patterns, 27: 106−113. doi: 10.1016/j.gep.2017.11.005 [93] Sun XD, Zhang RB, Liu M, Chen HG, Chen L, Luo FT, et al. 2019. Rmrp mutation disrupts chondrogenesis and bone ossification in zebrafish model of cartilage-Hair Hypoplasia via Enhanced Wnt/β-Catenin signaling. Journal of Bone and Mineral Research, 34(11): 2101−2116. doi: 10.1002/jbmr.3820 [94] Suo JL, Feng X, Li JY, Wang JH, Wang ZY, Zhang L, et al. 2020. VGLL4 promotes osteoblast differentiation by antagonizing TEADs-inhibited Runx2 transcription. Science Advances, 6(43): eaba4147. doi: 10.1126/sciadv.aba4147 [95] Takarada T, Nakazato R, Tsuchikane A, Fujikawa K, Iezaki T, Yoneda Y, et al. 2016. Genetic analysis of Runx2 function during intramembranous ossification. Development, 143(2): 211−218. doi: 10.1242/dev.128793 [96] Tang GP, Lv WH, Sun ZP, Cao DC, Zheng XH, Tong GX, et al. 2020. Heritability and quantitative trait locus analyses of intermuscular bones in mirror carp (Cyprinus carpio). Aquaculture, 515: 734601. doi: 10.1016/j.aquaculture.2019.734601 [97] Thirunavukkarasu K, Mahajan M, McLarren KW, Stifani S, Karsenty G. 1998. Two domains unique to osteoblast-specific transcription factor Osf2/Cbfa1 contribute to its transactivation function and its inability to heterodimerize with Cbfβ. Molecular and Cellular Biology, 18(7): 4197−4208. doi: 10.1128/MCB.18.7.4197 [98] Thomas DM, Carty SA, Piscopo DM, Lee JS, Wang WF, Forrester WC, et al. 2001. The retinoblastoma protein acts as a transcriptional coactivator required for osteogenic differentiation. Molecular Cell, 8(2): 303−316. doi: 10.1016/S1097-2765(01)00327-6 [99] Tintut Y, Parhami F, Le V, Karsenty G, Demer LL. 1999. Inhibition of osteoblast-specific transcription factor Cbfa1 by the cAMP pathway in osteoblastic cells: ubiquitin/proteasome-dependent regulation. Journal of Biological Chemistry, 274(41): 28875−28879. doi: 10.1074/jbc.274.41.28875 [100] Uemura M, Nagasawa A, Terai K. 2016. Yap/Taz transcriptional activity in endothelial cells promotes intramembranous ossification via the BMP pathway. Scientific Reports, 6: 27473. doi: 10.1038/srep27473 [101] Wan SM, Xiong XM, Tomljanović T, Chen YL, Liu H, Treer T, et al. 2019. Identification and mapping of SNPs associated with number of intermuscular bone in blunt snout bream. Aquaculture, 507: 75−82. doi: 10.1016/j.aquaculture.2019.04.013 [102] Wan SM, Yi SK, Zhong J, Nie CH, Guan NN, Chen BX, et al. 2015. Identification of MicroRNA for intermuscular bone development in blunt snout bream (Megalobrama amblycephala). International Journal of Molecular Sciences, 16(5): 10686−10703. [103] Wan SM, Yi SK, Zhong J, Wang WM, Jiang EM, Chen BX, et al. 2014. Developmental and morphological observation of intermuscular bones in Megalobrama amblycephala. Acta Hydrobiologica Sinica, 38(6): 1143−1151. (in Chinese) [104] Wang LJ, Huang JH, Moore DC, Song YM, Ehrlich MG, Yang WT. 2019. SHP2 regulates intramembranous ossification by modifying the TGFβ and BMP2 signaling pathway. Bone, 120: 327−335. doi: 10.1016/j.bone.2018.11.014 [105] Woynárovich A, Van Anrooy R. 2019. Field guide to the culture of tambaqui (Colossoma macropomum, Cuvier, 1816). FAO Fisheries and Aquaculture Technical Paper No. 624. Rome: FAO. [106] Wu CX, Xu XW, Zhi XP, Jiang ZY, Li YP, Xie XF, et al. 2019. Identification and functional characterization of IRAK-4 in grass carp (Ctenopharyngodon idellus). Fish & Shellfish Immunology, 87: 438−448. [107] Xiao GZ, Jiang D, Gopalakrishnan R, Franceschi RT. 2002. Fibroblast growth factor 2 induction of the osteocalcin gene requires MAPK activity and phosphorylation of the osteoblast transcription factor, Cbfa1/Runx2. Journal of Biological Chemistry, 277(39): 36181−36187. doi: 10.1074/jbc.M206057200 [108] Xing WR, Singgih A, Kapoor A, Alarcon CM, Baylink DJ, Mohan S. 2007. Nuclear factor-E2-related factor-1 mediates ascorbic acid induction of osterix expression via interaction with antioxidant-responsive element in bone cells. Journal of Biological Chemistry, 282(30): 22052−22061. doi: 10.1074/jbc.M702614200 [109] Xiong XM, Robinson NA, Zhou JJ, Chen YL, Wang WM, Wang XB, et al. 2019. Genetic parameter estimates for intermuscular bone in blunt snout bream (Megalobrama amblycephala) based on a microsatellite-based pedigree. Aquaculture, 502: 371−377. doi: 10.1016/j.aquaculture.2018.12.072 [110] Xu XF, Zheng JB, Qian YQ, Luo C. 2015. Normally grown and developed intermuscular bone-deficient mutant in grass carp, Ctenopharyngodon idellus. Chinese Science Bulletin, 60(1): 52−57. (in Chinese) doi: 10.1360/N972014-00637 [111] Yamashiro T, Wang XP, Li Z, Oya S, Åberg T, Fukunaga T, et al. 2004. Possible roles of Runx1 and Sox9 in incipient intramembranous ossification. Journal of Bone and Mineral Research, 19(10): 1671−1677. doi: 10.1359/JBMR.040801 [112] Yan NN, Su JG, Yang CR, Rao YL, Feng XL, Wan QY, et al. 2015. Grass carp SARM1 and its two splice variants negatively regulate IFN-I response and promote cell death upon GCRV infection at different subcellular locations. Developmental & Comparative Immunology, 48(1): 102−115. [113] Yan XC, Liang LQ, Cao DC, Sun XW. 2013. Detection and Analysis of Transgenic Common Carp with RNAi. Chinese Journal of Fisheries, 26(3): 1−5. (in Chinese) [114] Yang G, Qin ZD, Kou HY, Liang RS, Zhao LJ, Jiang SJ, et al. 2019a. A comparative genomic and transcriptional survey providing novel insights into bone morphogenetic protein 2 (bmp2) in Fishes. International Journal of Molecular Sciences, 20(24): 6137. doi: 10.3390/ijms20246137 [115] Yang J, Tong GX, Sun ZP, Zheng XH, Lv WH, Cao DC, et al. 2020a. Comparative analysis of muscle development in zebrafish with different intermuscular-bones patterns. Pakistan Journal of Zoology, 53(1): 313−322. [116] Yang J, Tong GX, Zheng XH, Sun ZP, Lv WH, Sun XW, et al. 2019b. Comparative analysis of embryonic muscle development in wildtype zebrafish and its intermuscular bone deficiency mutant. Journal of Fishery Sciences of China, 26(2): 296−303. (in Chinese) doi: 10.3724/SP.J.1118.2019.18119 [117] Yang J, Tong GX, Zheng XH, Sun ZP, Lv WH, Sun XW, et al. 2020b. Comparative analysis of skeletal development between wildtype zebrafish and intermuscular bone-deficient mutants. Acta Hydrobiologica Sinica, 44(3): 546−553. (in Chinese) [118] Yang KF, Jiang WS, Wang XA, Zhang YW, Pan XF, Yang JX. 2019c. Evolution of the intermuscular bones in the Cyprinidae (Pisces) from a phylogenetic perspective. Ecology and Evolution, 9(15): 8555−8566. doi: 10.1002/ece3.5374 [119] Yang KF, Pan XF, Wang XA, Liu Q, Yang JX. 2015. Quantitative variation and morphotype of intermuscular bones in Sinocyclocheilus cavefish. Cave Research, 2: 3. [120] Yang MX, Zhu ZA, Chen JJ, Cai XZ, Fan ZY, Huang CN, et al. 2019d. Cloning and prokaryotic expression of the SOST gene of Carassius auratus. Journal of Zhongkai University of Agriculture and Engineering, 32(2): 58−63. (in Chinese) [121] Yao WJ, Gong XL, Lv YP, Bao BL. 2014. The ossificational process of the intermuscular bones in Anguilla japonica. Journal of Shanghai Ocean University, 23(6): 810−813. (in Chinese) [122] Yao WJ, Lv YP, Gong XL, Wu JM, Bao BL. 2015. Different ossification patterns of intermuscular bones in fish with different swimming modes. Biology Open, 4(12): 1727−1732. doi: 10.1242/bio.012856 [123] Yasutake J, Inohaya K, Kudo A. 2004. Twist functions in vertebral column formation in medaka, Oryzias latipes. Mechanisms of Development, 121(7-8): 883−894. doi: 10.1016/j.mod.2004.03.008 [124] Yu HMI, Jerchow B, Sheu TJ, Liu B, Costantini F, Puzas JE, et al. 2005. The role of Axin2 in calvarial morphogenesis and craniosynostosis. Development, 132(8): 1995−2005. doi: 10.1242/dev.01786 [125] Yu SB, Franceschi RT, Luo M, Fan J, Jiang D, Cao HL, et al. 2009. Critical role of activating transcription factor 4 in the anabolic actions of parathyroid hormone in bone. PLoS One, 4(10): e7583. doi: 10.1371/journal.pone.0007583 [126] Zambetti GP, Horwitz EM, Schipani E. 2006. Skeletons in the p53 tumor suppressor closet: genetic evidence that p53 blocks bone differentiation and development. Journal of Cell Biology, 172(6): 795−797. doi: 10.1083/jcb.200601114 [127] Zhang C. 2010. Transcriptional regulation of bone formation by the osteoblast-specific transcription factor Osx. Journal of Orthopaedic Surgery and Research, 5(1): 37. doi: 10.1186/1749-799X-5-37 [128] Zhang F, Wen Y, Guo X. 2014. CRISPR/Cas9 for genome editing: progress, implications and challenges. Human Molecular Genetics, 23(R1): R40−R46. doi: 10.1093/hmg/ddu125 [129] Zhang WZ, Lan T, Nie CH, Guan NN, Gao ZX. 2018. Characterization and spatiotemporal expression analysis of nine bone morphogenetic protein family genes during intermuscular bone development in blunt snout bream. Gene, 642: 116−124. doi: 10.1016/j.gene.2017.11.027 [130] Zhang X, Zara J, Siu RK, Ting K, Soo C. 2010. The role of NELL-1, a growth factor associated with craniosynostosis, in promoting bone regeneration. Journal of Dental Research, 89(9): 865−878. doi: 10.1177/0022034510376401 [131] Zhang YW, Yasui N, Ito K, Huang G, Fujii M, Hanai JI, et al. 2000. A RUNX2/PEBP2αA/CBFA1 mutation displaying impaired transactivation and Smad interaction in cleidocranial dysplasia. Proceedings of the National Academy of Sciences of the United States of America, 97(19): 10549−10554. doi: 10.1073/pnas.180309597 [132] Zhong ZM, Niu PF, Wang MY, Huang GD, Xu SH, Sun Y, et al. 2016. Targeted disruption of sp7 and myostatin with CRISPR-Cas9 results in severe bone defects and more muscular cells in common carp. Scientific Reports, 6: 22953. doi: 10.1038/srep22953 [133] Zhu J, Shimizu E, Zhang XR, Partridge NC, Qin L. 2011. EGFR signaling suppresses osteoblast differentiation and inhibits expression of master osteoblastic transcription factors Runx2 and osterix. Journal of Cellular Biochemistry, 112(7): 1749−1760. doi: 10.1002/jcb.23094 -