Comparative analysis of DNA extraction protocols for ancient soft tissue museum samples
-
摘要: 濒危或已灭绝动物的DNA研究通常依据古代或已严重降解的标本遗存。比较成熟的古DNA(ancient DNA,aDNA)提取方法主要针对于骨骼样本,对于皮张和毛发的研究较为少见。与古代的骨骼和牙齿情况相似,陈旧皮张样品中的DNA也由于自然降解等情况的存在,使得获取到的DNA片段长度极短、内源DNA含量极低。因此,针对这些样品,需要开发有效的DNA提取方法。本研究以几十年前到铁器时代的动物皮张和毛发样品为材料,比较2种提取方法(试剂盒法和古DNA实验室法)及相互组合的2种方法的DNA提取效果。研究发现除样品本身的差别(如年代等),皮张样品比毛发样品保留更多的内源DNA。所有方法都能够从陈旧的皮张样品中获取内源DNA,但是实验室的方法在DNA产量和质量上整体优于其它方法,实验室方法在纯化上的表现优于试剂盒方法。Abstract: DNA studies of endangered or extinct species often rely on ancient or degraded remains. The majority of ancient DNA (aDNA) extraction protocols focus on skeletal elements, with skin and hair samples rarely explored. Similar to that found in bones and teeth, DNA extracted from historical or ancient skin and fur samples is also extremely fragmented with low endogenous content due to natural degradation processes. Thus, the development of effective DNA extraction methods is required for these materials. Here, we compared the performance of two DNA extraction protocols (commercial and custom laboratory aDNA methods) on hair and skin samples from decades-old museum specimens to Iron Age archaeological material. We found that apart from the impact sample-specific taphonomic and handling history has on the quantity and quality of DNA preservation, skin yielded more endogenous DNA than hair of the samples and protocols tested. While both methods recovered DNA from ancient soft tissue, the laboratory method performed better overall in terms of DNA yield and quality, which was primarily due to the poorer performance of the commercial binding buffer in recovering aDNA.
-
Key words:
- DNA extraction method /
- Ancient DNA /
- High-throughput sequencing /
- Historical and ancient skin materials
-
Figure 1. Experimental design, DNA yield of each sample, and sequence content of library bar plots of this study
A: Experimental design showing different combinations of applied extraction and binding buffers (from kit (K) or laboratory (L)). KK: Both buffers from kit; KL: Lysis buffer from kit, laboratory-made binding buffer; LK: Laboratory-made lysis buffer, binding buffer from kit; LL: Both buffers made in laboratory. B: DNA yield of each sample. (a) Normalized amount of DNA for historical skin samples of monkeys, y-axis shows results of normalized molecule number. (b) Normalized amount of DNA for historical hair samples of monkeys. (c) Normalized amount of DNA for ancient samples of dogs. C: Sequence content of library bar plots (a) DNA yield. (b) Number of uniquely mapped reads. (c) Clonality. Percentage shown as a fraction of highest value among different methods for same samples. Dotted horizontal bar represents average values of each method.
Table 1. Samples used in this study
Sample Region, country Sample age (years before present) Species Skin-1 Yunnan Province, China ~30 Rhinopithecus strykeri Hair-1 Yunnan Province, China ~30 Rhinopithecus strykeri Skin-2 Yunnan Province, China ~50 Rhinopithecus strykeri Hair-2 Yunnan Province, China ~50 Rhinopithecus strykeri Skin-3 Na Hang, Vietnam Several decades Rhinopithecus avunculus Skin-4 Xinjiang Uyghur Autonomous Region, China ~2 400–3 100 Canis lupus familiaris Skin-5 Xinjiang Uyghur Autonomous Region, China ~2 400–3 100 Canis lupus familiaris Skin-6 Xinjiang Uyghur Autonomous Region, China ~2 400–3 100 Canis lupus familiaris -
[1] Briggs AW, Stenzel U, Johnson PLF, Green RE, Kelso J, Prüfer K, et al. 2007. Patterns of damage in genomic DNA sequences from a Neandertal. Proceedings of the National Academy of Sciences of the United States of America, 104(37): 14616−14621. doi: 10.1073/pnas.0704665104 [2] Dabney J, Meyer M, Pääbo S. 2013. Ancient DNA damage. Cold Spring Harbor Perspectives in Biology, 5(7): a012567. [3] Daley T, Smith AD. 2013. Predicting the molecular complexity of sequencing libraries. Nature Methods, 10(4): 325−327. doi: 10.1038/nmeth.2375 [4] Damgaard PB, Margaryan A, Schroeder H, Orlando L, Willerslev E, Allentoft ME. 2015. Improving access to endogenous DNA in ancient bones and teeth. Scientific Reports, 5: 11184. doi: 10.1038/srep11184 [5] Ermini L, Der Sarkissian C, Willerslev E, Orlando L. 2015. Major transitions in human evolution revisited: a tribute to ancient DNA. Journal of Human Evolution, 79: 4−20. doi: 10.1016/j.jhevol.2014.06.015 [6] Fulton TL, Wagner SM, Shapiro B. 2012. Case study: recovery of ancient nuclear DNA from toe pads of the extinct passenger pigeon. In: Shapiro B, Hofreiter M. Ancient DNA: Methods and Protocols. New York: Humana Press, 29–35. [7] Gamba C, Hanghøj K, Gaunitz C, Alfarhan AH, Alquraishi SA, Al-Rasheid KAS, et al. 2016. Comparing the performance of three ancient DNA extraction methods for high-throughput sequencing. Molecular Ecology Resources, 16(2): 459−469. doi: 10.1111/1755-0998.12470 [8] Gilbert MTP, Tomsho LP, Rendulic S, Packard M, Drautz DI, Sher A, et al. 2007. Whole-genome shotgun sequencing of mitochondria from ancient hair shafts. Science, 317(5846): 1927−1930. doi: 10.1126/science.1146971 [9] Gilbert MTP, Wilson AS, Bunce M, Hansen AJ, Willerslev E, Shapiro B, et al. 2004. Ancient mitochondrial DNA from hair. Current Biology, 14(12): R463−R464. doi: 10.1016/j.cub.2004.06.008 [10] Ginolhac A, Rasmussen M, Gilbert MTP, Willerslev E, Orlando L. 2011. Mapdamage: testing for damage patterns in ancient DNA sequences. Bioinformatics, 27(15): 2153−2155. doi: 10.1093/bioinformatics/btr347 [11] Glocke I, Meyer M. 2017. Extending the spectrum of DNA sequences retrieved from ancient bones and teeth. Genome Research, 27(7): 1230−1237. doi: 10.1101/gr.219675.116 [12] Head SR, Komori HK, LaMere SA, Whisenant T, van Nieuwerburgh F, Salomon DR, et al. 2014. Library construction for next-generation sequencing: overviews and challenges. Biotechniques, 56(2): 61−77. [13] Hung CM, Lin RC, Chu JH, Yeh CF, Yao CJ, Li SH. 2013. The de novo assembly of mitochondrial genomes of the extinct passenger pigeon (Ectopistes migratorius) with next generation sequencing. PLoS One, 8(2): e56301. doi: 10.1371/journal.pone.0056301 [14] Jónsson H, Ginolhac A, Schubert M, Johnson PLF, Orlando L. 2013. Mapdamage2.0: fast approximate bayesian estimates of ancient DNA damage parameters. Bioinformatics, 29(13): 1682−1684. doi: 10.1093/bioinformatics/btt193 [15] Kircher M, Sawyer S, Meyer M. 2012. Double indexing overcomes inaccuracies in multiplex sequencing on the illumina platform. Nucleic Acids Research, 40(1): e3. doi: 10.1093/nar/gkr771 [16] Ko AMS, Zhang YQ, Yang MA, Hu YB, Cao P, Feng XT, et al. 2018. Mitochondrial genome of a 22,000-year-old giant panda from southern China reveals a new panda lineage. Current Biology, 28(12): R693−R694. doi: 10.1016/j.cub.2018.05.008 [17] Korlević P, Gerber T, Gansauge MT, Hajdinjak M, Nagel S, Aximu-Petri A, et al. 2015. Reducing microbial and human contamination in DNA extractions from ancient bones and teeth. BioTechniques, 59(2): 87−93. [18] Li H, Durbin R. 2010. Fast and accurate long-read alignment with burrows-wheeler transform. Bioinformatics, 26(5): 589−595. doi: 10.1093/bioinformatics/btp698 [19] Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. 2009. The sequence alignment/map format and samtools. Bioinformatics, 25(16): 2078−2079. doi: 10.1093/bioinformatics/btp352 [20] Liedigk R, Yang MY, Jablonski NG, Momberg F, Geissmann T, Lwin N, et al. 2012. Evolutionary history of the odd-nosed monkeys and the phylogenetic position of the newly described Myanmar snub-nosed monkey Rhinopithecus strykeri. PLoS One, 7(5): e37418. doi: 10.1371/journal.pone.0037418 [21] Meyer M, Fu QM, Aximu-Petri A, Glocke I, Nickel B, Arsuaga JL, et al. 2014. A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature, 505(7483): 403−406. doi: 10.1038/nature12788 [22] Meyer M, Kircher M. 2010. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harbor Protocols, 6: 1−10. [23] Nieves-Colón MA, Ozga AT, Pestle WJ, Cucina A, Tiesler V, Stanton TW, et al. 2018. Comparison of two ancient DNA extraction protocols for skeletal remains from tropical environments. American Journal of Physical Anthropology, 166(4): 824−836. doi: 10.1002/ajpa.23472 [24] Orlando L, Ginolhac A, Raghavan M, Vilstrup J, Rasmussen M, Magnussen K, et al. 2011. True single-molecule DNA sequencing of a Pleistocene horse bone. Genome Research, 21(10): 1705−1719. doi: 10.1101/gr.122747.111 [25] Overballe-Petersen S, Orlando L, Willerslev E. 2012. Next-generation sequencing offers new insights into DNA degradation. Trends in Biotechnology, 30(7): 364−368. doi: 10.1016/j.tibtech.2012.03.007 [26] Pedersen MW, Overballe-Petersen S, Ermini L, Der Sarkissian C, Haile J, Hellstrom M, et al. 2015. Ancient and modern environmental DNA. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1660): 20130383. doi: 10.1098/rstb.2013.0383 [27] Rasmussen M, Guo XS, Wang Y, Lohmueller KE, Rasmussen S, Albrechtsen A, et al. 2011. An Aboriginal Australian genome reveals separate human dispersals into Asia. Science, 334(6052): 94−98. doi: 10.1126/science.1211177 [28] Rasmussen M, Li YR, Lindgreen S, Pedersen JS, Albrechtsen A, Moltke I, et al. 2010. Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature, 463(7282): 757−762. doi: 10.1038/nature08835 [29] Renaud G, Stenzel U, Kelso J. 2014. Leehom: adaptor trimming and merging for illumina sequencing reads. Nucleic Acids Research, 42(18): e141. doi: 10.1093/nar/gku699 [30] Rohland N, Glocke I, Aximu-Petri A, Meyer M. 2018. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nature Protocols, 13(11): 2447−2461. doi: 10.1038/s41596-018-0050-5 [31] Yang MA, Fan XC, Sun B, Chen CY, Lang JF, Ko YC, et al. 2020. Ancient DNA indicates human population shifts and admixture in northern and southern China. Science, 369(6501): 282−288. doi: 10.1126/science.aba0909 -
ZR-2020-377Supplementary.zip
-