留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Xiu-Wei Yu, Tong-Tong Li, Xiao-Min Du, Qiao-Yan Shen, Meng-Fei Zhang, Yu-Dong Wei, Dong-Hui Yang, Wen-Jing Xu, Wen-Bo Chen, Chun-Ling Bai, Xue-Ling Li, Guang-Peng Li, Na Li, Sha Peng, Ming-Zhi Liao, Jin-Lian Hua. Single-cell RNA sequencing reveals atlas of dairy goat testis cells. Zoological Research, 2021, 42(4): 401-405. doi: 10.24272/j.issn.2095-8137.2020.373
Citation: Xiu-Wei Yu, Tong-Tong Li, Xiao-Min Du, Qiao-Yan Shen, Meng-Fei Zhang, Yu-Dong Wei, Dong-Hui Yang, Wen-Jing Xu, Wen-Bo Chen, Chun-Ling Bai, Xue-Ling Li, Guang-Peng Li, Na Li, Sha Peng, Ming-Zhi Liao, Jin-Lian Hua. Single-cell RNA sequencing reveals atlas of dairy goat testis cells. Zoological Research, 2021, 42(4): 401-405. doi: 10.24272/j.issn.2095-8137.2020.373

利用单细胞转录组测序解析奶山羊睾丸细胞图谱

doi: 10.24272/j.issn.2095-8137.2020.373

Single-cell RNA sequencing reveals atlas of dairy goat testis cells

Funds: This work was supported by the National Natural Science Foundation of China (31572399, 32072806, 32072815, 32002246, 61772431, 62072377), and Program of Shaanxi Province Science and Technology Innovation Team (2019TD-036), Program of State Key Lab of Reproductive Regulation & Breeding of Grassland Livestock (SKL-OT-201801), Program of State Key Laboratory of Respiratory Disease (SKLRD-OP-202114), Science and Technology Major Project of Inner Mongolia Autonomous Region of China (ZDZX2018065), the First-class University and Academic Program from Northwest A&F University (Z1010221003) and Financial aid for basic operation fee of Central University(Z1090219146)
More Information
  • 摘要: 单细胞转录组测序(scRNA-seq)已被用于探索细胞异质性和发育谱系及其功能的研究。但在大型动物中,尤其是在奶山羊,对于精原干细胞(SSC)自我更新的调控知之甚少。基于此,我们解析了奶山羊睾丸细胞的高分辨率scRNA-seq数据集;在奶山羊精子发生过程中,Notch信号通路、TGF-β信号通路、Hippo信号通路以及参与干细胞多能性调节的信号通路的基因表达发生明显改变;并进一步筛选发现了奶山羊精原细胞的特异性标记基因:TKTL1和AES。该研究为山羊精子发生和睾丸体细胞的发育提供了新见识和科学依据。
    #Authors contributed equally to this work
  • Figure  1.  Single-cell RNA sequencing reveals atlas of dairy goat testis cells

    Ai: t-SNE cluster containing 3 890 cells (cells are colored by 13 broad cell types). Aii: t-SNE diagram of somatic cells in testis of dairy goat (cells are colored by eight broad cell types). Bi: Pseudotime trajectory analysis of Sertoli cells. Bii: Pseudotime trajectory analysis of Leydig and Myoid cells. Ci: t-SNE image of testicular germ cells in dairy goats (cells are colored by 10 broad cell types). Cii: Pseudotime trajectory analysis of germ cell clusters. Shades of blue indicate sorting according to pseudotime value. D: KEGG analysis of main differentially expressed genes during spermatogenesis. E: t-SNE diagram of re-clustering of spermatocytes and spermatogonia in dairy goat testes (cells are colored by seven broad cell types). F: Expression distribution of TKTL1 in spermatogonia clusters. G: Immunohistochemical staining for TKTL1 expression in dairy goat. Red arrows indicate spermatogonia. Scale bar: 50 μm.

  • [1] Bellvé AR, Cavicchia JC, Millette CF, O'Brien DA, Bhatnagar YM, Dym M. 1977. Spermatogenic cells of the prepuberal mouse: isolation and morphological characterization. Journal of Cell Biology, 74(1): 68−85. doi: 10.1083/jcb.74.1.68
    [2] Bhattacharya I, Sen Sharma S, Majumdar SS. 2019. Pubertal orchestration of hormones and testis in primates. Molecular Reproduction & Development, 86(11): 1505−1530.
    [3] Chanoumidou K, Hadjimichael C, Athanasouli P, Ahlenius H, Klonizakis A, Nikolaou C, et al. 2018. Groucho related gene 5 (GRG5) is involved in embryonic and neural stem cell state decisions. Scientific Reports, 8(1): 13790. doi: 10.1038/s41598-018-31696-9
    [4] Chen XX, Che DX, Zhang PF, Li XL, Yuan QQ, Liu TT, et al. 2017. Profiling of miRNAs in porcine germ cells during spermatogenesis. Reproduction, 154(6): 789−798. doi: 10.1530/REP-17-0441
    [5] Choi YH, Kim JK. 2019. Dissecting cellular heterogeneity using single-cell RNA sequencing. Molecules and Cells, 42(3): 189−199.
    [6] de Rooij DG. 2017. The nature and dynamics of spermatogonial stem cells. Development, 144(17): 3022−3030. doi: 10.1242/dev.146571
    [7] Du XM, Wu SY, Wei YD, Yu XW, Ma FL, Zhai YX, et al. 2021. PAX7 promotes CD49f-positive dairy goat spermatogonial stem cells' self-renewal. Journal of Cellular Physiology, 236(2): 1481−1493. doi: 10.1002/jcp.29954
    [8] Fayomi AP, Orwig KE. 2018. Spermatogonial stem cells and spermatogenesis in mice, monkeys and men. Stem Cell Research, 29: 207−214. doi: 10.1016/j.scr.2018.04.009
    [9] França LR, Avelar GF, Almeida FFL. 2005. Spermatogenesis and sperm transit through the epididymis in mammals with emphasis on pigs. Theriogenology, 63(2): 300−318. doi: 10.1016/j.theriogenology.2004.09.014
    [10] Gaysinskaya V, Bortvin A. 2015. Flow cytometry of murine spermatocytes. Current Protocols in Cytometry, 72(1): 7.44.1−7.44.24.
    [11] Green CD, Ma QY, Manske GL, Shami AN, Zheng XN, Marini S, et al. 2018. A comprehensive roadmap of murine spermatogenesis defined by single-cell RNA-Seq. Developmental Cell, 46(5): 651−667. doi: 10.1016/j.devcel.2018.07.025
    [12] Guo JT, Grow EJ, Mlcochova H, Maher GJ, Lindskog C, Nie XC, et al. 2018. The adult human testis transcriptional cell atlas. Cell Research, 28(12): 1141−1157. doi: 10.1038/s41422-018-0099-2
    [13] Guo JT, Grow EJ, Yi CL, Mlcochova H, Maher GJ, Lindskog C, et al. 2017. Chromatin and single-cell RNA-Seq profiling reveal dynamic signaling and metabolic transitions during human spermatogonial stem cell development. Cell Stem Cell, 21(4): 533−546. doi: 10.1016/j.stem.2017.09.003
    [14] Guo JT, Nie XC, Giebler M, Mlcochova H, Wang YQ, Grow EJ, et al. 2020. The dynamic transcriptional cell atlas of testis development during human puberty. Cell Stem Cell, 26(2): 262−276. doi: 10.1016/j.stem.2019.12.005
    [15] Guo JT, Sosa E, Chitiashvili T, Nie XC, Rojas EJ, Oliver E, et al. 2021. Single-cell analysis of the developing human testis reveals somatic niche cell specification and fetal germline stem cell establishment. Cell Stem Cell, 28(4): 764−778. doi: 10.1016/j.stem.2020.12.004
    [16] Hermann BP, Cheng KR, Singh A, Roa-De La Cruz L, Mutoji KN, Chen IC, et al. 2018. The mammalian spermatogenesis single-cell transcriptome, from spermatogonial stem cells to spermatids. Cell Reports, 25(6): 1650−1667. doi: 10.1016/j.celrep.2018.10.026
    [17] Lau X, Munusamy P, Ng MJ, Sangrithi M. 2020. Single-cell RNA sequencing of the Cynomolgus macaque testis reveals conserved transcriptional profiles during mammalian spermatogenesis. Developmental Cell, 54(4): 548−566. doi: 10.1016/j.devcel.2020.07.018
    [18] Liao JY, Ng SH, Luk AC, Suen HC, Qian Y, Lee AWT, et al. 2019. Revealing cellular and molecular transitions in neonatal germ cell differentiation using single cell RNA sequencing. Development, 146(6): dev174953.
    [19] Liu Y, Niu MH, Yao CC, Hai YN, Yuan QQ, Liu Y, et al. 2015. Fractionation of human spermatogenic cells using STA-PUT gravity sedimentation and their miRNA profiling. Scientific Reports, 5(1): 8084. doi: 10.1038/srep08084
    [20] Lovelace DL, Gao Z, Mutoji K, Song YC, Ruan JH, Hermann BP. 2016. The regulatory repertoire of PLZF and SALL4 in undifferentiated spermatogonia. Development, 143(11): 1893−1906.
    [21] Mays-Hoopes LL, Bolen J, Riggs AD, Singer-Sam J. 1995. Preparation of spermatogonia, spermatocytes, and round spermatids for analysis of gene expression using fluorescence-activated cell sorting. Biology of Reproduction, 53(5): 1003−1011. doi: 10.1095/biolreprod53.5.1003
    [22] Melé M, Ferreira PG, Reverter F, DeLuca DS, Monlong J, Sammeth M, et al. 2015. The human transcriptome across tissues and individuals. Science, 348(6235): 660−665. doi: 10.1126/science.aaa0355
    [23] Morrison SJ, Spradling AC. 2008. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell, 132(4): 598−611. doi: 10.1016/j.cell.2008.01.038
    [24] Oakberg EF. 1956. A description of spermiogenesis in the mouse and its use in analysis of the cycle of the seminiferous epithelium and germ cell renewal. American Journal of Anatomy, 99(3): 391−413. doi: 10.1002/aja.1000990303
    [25] Oakberg EF. 1957. Duration of spermatogenesis in the mouse. Nature, 180(4595): 1137−1138. doi: 10.1038/1801137a0
    [26] Okuyama MW, Shimozuru M, Abe G, Nakai M, Sashika M, Shimada KI, et al. 2013. Timing of puberty and its relationship with body growth and season in male raccoons (Procyon lotor) in Hokkaido. Journal of Reproduction and Development, 59(4): 361−367. doi: 10.1262/jrd.2012-198
    [27] Rolland AD, Lavigne R, Dauly C, Calvel P, Kervarrec C, Freour T, et al. 2013. Identification of genital tract markers in the human seminal plasma using an integrative genomics approach. Human Reproduction, 28(1): 199−209. doi: 10.1093/humrep/des360
    [28] Scadden DT. 2006. The stem-cell niche as an entity of action. Nature, 441(7097): 1075−1079. doi: 10.1038/nature04957
    [29] Shah MA, Xu CF, Wu SX, Zhao WS, Luo H, Yi CP, et al. 2018. Isolation and characterization of spermatogenic cells from cattle, yak and cattleyak. Animal Reproduction Science, 193: 182−190. doi: 10.1016/j.anireprosci.2018.04.067
    [30] Shami AN, Zheng XN, Munyoki SK, Ma QY, Manske GL, Green CD, et al. 2020. Single-cell RNA sequencing of human, macaque, and mouse testes uncovers conserved and divergent features of mammalian spermatogenesis. Developmental Cell, 54(4): 529−547. doi: 10.1016/j.devcel.2020.05.010
    [31] Soumillon M, Necsulea A, Weier M, Brawand D, Zhang XL, Gu HC, et al. 2013. Cellular source and mechanisms of high transcriptome complexity in the mammalian testis. Cell Reports, 3(6): 2179−2190. doi: 10.1016/j.celrep.2013.05.031
    [32] Tagelenbosch RAJ, de Rooij DG. 1993. A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 290(2): 193−200. doi: 10.1016/0027-5107(93)90159-D
    [33] Tan K, Song HW, Wilkinson MF. 2020. Single-cell RNAseq analysis of testicular germ and somatic cell development during the perinatal period. Development, 147(3): dev183251.
    [34] Tharmalingam MD, Jorgensen A, Mitchell RT. 2018. Experimental models of testicular development and function using human tissue and cells. Molecular and Cellular Endocrinology, 468: 95−110. doi: 10.1016/j.mce.2017.12.011
    [35] Wang M, Liu XX, Chang G, Chen YD, An G, Yan LY, et al. 2018. Single-Cell RNA sequencing analysis reveals sequential cell fate transition during human spermatogenesis. Cell Stem Cell, 23(4): 599−614. doi: 10.1016/j.stem.2018.08.007
    [36] Wei YD, Du XM, Yang DH, Ma FL, Yu XW, Zhang MF, et al. 2021. Dmrt1 regulates the immune response by repressing the TLR4 signaling pathway in goat male germline stem cells. Zoological research, 42(1): 14−27. doi: 10.24272/j.issn.2095-8137.2020.186
    [37] Wei YD, Yang DH, Du XM, Yu XW, Zhang MF, Tang FR, et al. 2021. Interaction between DMRT1 and PLZF protein regulates self-renewal and proliferation in male germline stem cells. Molecular and cellular biochemistry, 476(2): 1123−1134. doi: 10.1007/s11010-020-03977-3
    [38] Xiang LF, Yin Y, Zheng Y, Ma YP, Li YG, Zhao ZG, et al. 2020. A developmental landscape of 3D-cultured human pre-gastrulation embryos. Nature, 577(7791): 537−542. doi: 10.1038/s41586-019-1875-y
    [39] Yan LY, Yang MY, Guo HS, Yang L, Wu J, Li R, et al. 2013. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nature Structural & Molecular Biology, 20(9): 1131−1139.
    [40] Yang H, Ma JY, Wan Z, Wang Q, Wang ZB, Zhao J, et al. 2021. Characterization of sheep spermatogenesis through single-cell RNA sequencing. FASEB Journal, 35(2): e21187.
    [41] Zheng X, Li HX. 2018. TKTL1 modulates the response of paclitaxel-resistant human ovarian cancer cells to paclitaxel. Biochemical and Biophysical Research Communications, 503(2): 572−579. doi: 10.1016/j.bbrc.2018.06.011
  • ZR-2020-373 Supplementary Materials.pdf
  • 加载中
图(1)
计量
  • 文章访问数:  2194
  • HTML全文浏览量:  1058
  • PDF下载量:  466
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-25
  • 录用日期:  2021-04-09
  • 网络出版日期:  2021-05-08
  • 刊出日期:  2021-07-18

目录

    /

    返回文章
    返回