Cataract-causing allele in CRYAA (Y118D) proceeds through endoplasmic reticulum stress in mouse model
-
摘要: 白内障是全球致盲率最高的眼科疾病,其发生发展与遗传、环境或衰老等造成的应激胁迫密切相关,发病机制较为复杂。目前,主流观点是大量未折叠蛋白累积,聚集沉淀,进而激活内质网应激(Endoplasmic Reticulum Stress, ERS),影响晶状体细胞命运。αA-晶体蛋白(CRYAA)作为小分子热休克蛋白,抑制β/γ-晶体蛋白错误折叠、聚集,维持晶体透明度发挥关键功能。研究报道,CRYAA遗传变异涉及先天性白内障或年龄相关性白内障,致病机制未阐述清楚。该研究成功构建人源遗传突变CRYAA-Y118D小鼠模型,突变型小鼠晶状体出现严重的后壁破裂、形态异常和晶体蛋白纤维排列异常等病理特征,与临床白内障病理特征一致。我们将通过转录组学探讨CRYAA-Y118D遗传突变致白内障的分子机制,差异基因的关键通路结果表明CRYAA-Y118D突变小鼠上调基因参与ERS-UPR通路。实验结果证实,CRYAA-Y118D分子伴侣功能缺陷导致UPR通路长期激活,剧烈应激反应导致聚集蛋白毒性和ERS诱导的细胞死亡。综上,该研究首次搭建人源遗传突变CRYAA-Y118D小鼠模型,揭示CRYAA-Y118D介导UPR-ERS影响晶状体细胞内蛋白质稳态及细胞命运决定,为白内障防治新策略提供动物模型和奠定理论依据。Abstract: As small heat shock proteins, α-crystallins function as molecular chaperones and inhibit the misfolding and aggregation of β/γ-crystallins. Genetic mutations of CRYAA are associated with protein aggregation and cataract occurrence. One possible process underlying cataract formation is that endoplasmic reticulum stress (ERS) induces the unfolded protein response (UPR), leading to apoptosis. However, the pathogenic mechanism related to this remains unexplored. Here, we successfully constructed a cataract-causing CRYAA (Y118D) mutant mouse model, in which the lenses of the CRYAA-Y118D mutant mice showed severe posterior rupture, abnormal morphological changes, and aberrant arrangement of crystallin fibers. Histological analysis was consistent with the clinical pathological characteristics. We also explored the pathogenic factors involved in cataract development through transcriptome analysis. In addition, based on key pathway analysis, up-regulated genes in CRYAA-Y118D mutant mice were implicated in the ERS-UPR pathway. This study showed that prolonged activation of the UPR pathway and severe stress response can cause proteotoxic and ERS-induced cell death in CRYAA-Y118D mutant mice.
-
Key words:
- Cataract /
- αA-crystallin /
- Unfolded protein response /
- Endoplasmic reticulum stress
-
Figure 1. Construction of αAY118D/Y118D mice and evaluation of cataract phenotype
A: Conservation analysis of amino acids 83-120 of CRYAA protein. * represents the 118th amino acid of CRYAA protein. B: Flow diagram o construction process of αAY118D/Y118D mice. C: Sequencing results of αAY118D/Y118D heterozygous mice showing successful mutation of Y118D. * represents the gene mutation site corresponding to the 118th amino acid mutation. D: Anterior segment images of αAY118D/Y118D mice and wild-type (WT) mice. Lens of WT mice was transparent; lens of mutant mouse showed severe opacity.
Figure 2. Detection of αAY118D/Y118D mouse lens properties
A: Histological analysis of WT and αAY118D/Y118D mutant mouse eye lenses. Sagittal sections of αAY118D/Y118D mouse eyes stained with H&E showing degeneration of lens nucleus and cortex fiber cells and highly disrupted morphology. B: Cortex and nucleus were separated from mouse lens. After centrifugation, proteins were divided into water-soluble and insoluble fractions for sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). C: Gray value analysis of electrophoresis lanes showed significant decrease in soluble components in αAY118D/Y118D lens nucleus. D: Immunoblot analysis of p62 in WT and αAY118D/Y118D mutant eye lenses. Expression of p62 in homozygous knock-in mutant lens was significantly higher than that in WT lens. Values are mean±SEM, *: P<0.05.
Figure 3. Bioinformatics analysis of αAY118D/Y118D mouse lens transcriptome
A: Volcano map of all detected genes in transcriptome. B: Gene Ontology analysis of differentially expressed genes (DEGs). C: Protein-protein interaction analysis of DEGs and hub gene screening. D: Scatter plot of ERS-UPR-related genes in KEGG pathway analysis. E: DEGs related to ERS-UPR in transcriptome.
Figure 4. Verification of expression of ERS-UPR-related genes
A: Western blotting of genes related to ERS-UPR signaling pathway. B: qPCR results of genes related to ERS-UPR signaling pathway. C: Expression levels of ERS-UPR signaling pathway-related genes in lens capsule, cortex, and nucleus. Values are mean±SEM, *: P<0.05.
Figure 5. Unfolded protein response (UPR) signaling pathways
There are three distinct UPR signaling pathways in mammalian cells: i.e., PERK, ATF6, and IRE1 pathways. Under normal conditions, the endoplasmic reticulum (ER) molecular chaperone, BiP, directly interacts with PERK, ATF6, and IRE1. PERK phosphorylates eIF2α to attenuate ER burden by inhibiting its translation initiation activity. PERK-phosphorylated eIF2α also activates ATF4, which induces expression of ER chaperone-related genes and autophagy-related proteins. When BiP is separated from ATF6, the latter moves to the Golgi apparatus, where it is cleaved into its active form by S1P and S2P. Active ATF6 translocates to the nucleus and induces transcription of ERS-response genes. IRE1 endoribonuclease is activated through dimerization and transphosphorylation. This leads to removal of a 26-nucleotide intron from the premature unspliced XBP1 (XBP1-u) gene form to produce the spliced XBP1 (XBP1-s) form. XBP1-s moves to the nucleus and induces UPR-responsive genes.
-
[1] Ahsan SM, Bakthisaran R, Tangirala R, Rao CM. 2021. Nucleosomal association and altered interactome underlie the mechanism of cataract caused by the R54C mutation of αA-crystallin. Biochimica Et Biophysica Acta. General Subjects, 1865(5): 129846. doi: 10.1016/j.bbagen.2021.129846 [2] Al Mamun A, Rahman MM, Zaman S, Munira MS, Uddin MS, Rauf A, et al. 2020. Molecular Insight into the Crosstalk of UPS Components and Alzheimer’s Disease. Current Protein & Peptide Science, 21(12): 1193−1201. [3] Andley UP. 2009. αA-crystallin R49Cneomutation influences the architecture of lens fiber cell membranes and causes posterior and nuclear cataracts in mice. BMC Ophthalmology, 9(1): 4. doi: 10.1186/1471-2415-9-4 [4] Andley UP, Goldman JW. 2016. Autophagy and UPR in alpha-crystallin mutant knock-in mouse models of hereditary cataracts. Biochimica et Biophysica Acta (BBA) - General Subjects, 1860: 234−239. doi: 10.1016/j.bbagen.2015.06.001 [5] Banh A, Bantseev V, Choh V, Moran KL, Sivak JG. 2006. The lens of the eye as a focusing device and its response to stress. Progress in Retinal and Eye Research, 25(2): 189−206. doi: 10.1016/j.preteyeres.2005.10.001 [6] Bari KJ, Sharma S, Chary KVR. 2019a. Structure of G57W mutant of human γS-crystallin and its involvement in cataract formation. Journal of Structural Biology, 205(3): 72−78. doi: 10.1016/j.jsb.2019.02.003 [7] Bari KJ, Sharma S, Chary KVR. 2019b. Conformational dynamics study on human γS-crystallin as an efficient route to childhood blindness. Biochemical and Biophysical Research Communications, 511(3): 679−684. doi: 10.1016/j.bbrc.2019.02.124 [8] Bartoszewska S, Collawn JF. 2020. Unfolded protein response (UPR) integrated signaling networks determine cell fate during hypoxia. Cellular & Molecular Biology Letters, 25: 18. [9] Cheng C, Xia C hong, Huang Q, Ding L, Horwitz J, Gong X. 2010. Altered Chaperone-like Activity of α-Crystallins Promotes Cataractogenesis. Journal of Biological Chemistry, 285(52): 41187−41193. doi: 10.1074/jbc.M110.154534 [10] Chothe PP, Thakkar SV, Gnana-Prakasam JP, Ananth S, Hinton DR, Kannan R, et al. 2010. Identification of a Novel Sodium-Coupled Oligopeptide Transporter (SOPT2) in Mouse and Human Retinal Pigment Epithelial Cells. Investigative Opthalmology & Visual Science, 51(1): 413. [11] Christopher KL, Pedler MG, Shieh B, Ammar DA, Petrash JM, Mueller NH. 2014. Alpha-crystallin-mediated protection of lens cells against heat and oxidative stress-induced cell death. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1843(2): 309−315. doi: 10.1016/j.bbamcr.2013.11.010 [12] Crawford RR, Prescott ET, Sylvester CF, Higdon AN, Shan J, Kilberg MS, et al. 2015. Human CHAC1 Protein Degrades Glutathione, and mRNA Induction Is Regulated by the Transcription Factors ATF4 and ATF3 and a Bipartite ATF/CRE Regulatory Element. Journal of Biological Chemistry, 290(25): 15878−15891. doi: 10.1074/jbc.M114.635144 [13] Delaye M, Tardieu A. 1983. Short-range order of crystallin proteins accounts for eye lens transparency. Nature, 302(5907): 415−417. doi: 10.1038/302415a0 [14] Derham B. 1999. Alpha-Crystallin as a molecular chaperone. Progress in Retinal and Eye Research, 18(4): 463−509. doi: 10.1016/S1350-9462(98)00030-5 [15] Frankfater C, Bozeman SL, Hsu FF, Andley UP. 2020. Alpha-crystallin mutations alter lens metabolites in mouse models of human cataracts. PloS One, 15(8): e0238081. doi: 10.1371/journal.pone.0238081 [16] Fu C, Xu J, Jia Z, Yao K, Chen X. 2021. Cataract-causing mutations L45P and Y46D promote γC-crystallin aggregation by disturbing hydrogen bonds network in the second Greek key motif. International Journal of Biological Macromolecules, 167: 470−478. doi: 10.1016/j.ijbiomac.2020.11.158 [17] Fusakio ME, Willy JA, Wang Y, Mirek ET, Al Baghdadi RJT, Adams CM, et al. 2016. Transcription factor ATF4 directs basal and stress-induced gene expression in the unfolded protein response and cholesterol metabolism in the liver (S Wolin, Ed.). Molecular Biology of the Cell, 27(9): 1536−1551. doi: 10.1091/mbc.E16-01-0039 [18] Galluzzi L, De Santi M, Crinelli R, De Marco C, Zaffaroni N, Duranti A, et al. 2012. Induction of Endoplasmic Reticulum Stress Response by the Indole-3-Carbinol Cyclic Tetrameric Derivative CTet in Human Breast Cancer Cell Lines (A Ahmad, Ed.). PLoS ONE, 7(8): e43249. doi: 10.1371/journal.pone.0043249 [19] Graw J, Löster J, Soewarto D, Fuchs H, Meyer B, Reis A, et al. 2001. Characterization of a new, dominant V124E mutation in the mouse alphaA-crystallin-encoding gene. Investigative Ophthalmology & Visual Science, 42(12): 2909−2915. [20] Hejtmancik JF. 2008. Congenital cataracts and their molecular genetics. Seminars in Cell & Developmental Biology, 19(2): 134−149. [21] Huang Q, Ding L, Phan KB, Cheng C, Xia CH, Gong X, et al. 2009. Mechanism of Cataract Formation in αA-crystallin Y118D Mutation. Investigative Opthalmology & Visual Science, 50(6): 2919. [22] Ichimura Y, Komatsu M. 2010. Selective degradation of p62 by autophagy. Seminars in Immunopathology, 32(4): 431−436. doi: 10.1007/s00281-010-0220-1 [23] Ikesugi K, Yamamoto R, Mulhern ML, Shinohara T. 2006. Role of the unfolded protein response (UPR) in cataract formation. Experimental Eye Research, 54(83): 508−516. [24] Inoue K, Fry EA, Frazier DP. 2016. Transcription factors that interact with p53 and Mdm2. International Journal of Cancer, 138(7): 1577−1585. doi: 10.1002/ijc.29663 [25] Kim R, Emi M, Tanabe K, Murakami S. 2006. Role of the unfolded protein response in cell death. Apoptosis, 11(1): 5−13. doi: 10.1007/s10495-005-3088-0 [26] Koteiche HA, Claxton DP, Mishra S, Stein RA, McDonald ET, Mchaourab HS. 2015. Species-Specific Structural and Functional Divergence of α-Crystallins: Zebrafish αBa- and Rodent αA(ins)-Crystallin Encode Activated Chaperones. Biochemistry, 54(38): 5949−5958. doi: 10.1021/acs.biochem.5b00678 [27] Lee CM, Afshari NA. 2017. The global state of cataract blindness. Current Opinion in Ophthalmology, 28(1): 98−103. doi: 10.1097/ICU.0000000000000340 [28] Lee WS, Yoo WH, Chae HJ. 2015. ER Stress and Autophagy. Current Molecular Medicine, 15(8): 735−745. doi: 10.2174/1566524015666150921105453 [29] Li J, Chen X, Yan Y, Yao K. 2020. Molecular genetics of congenital cataracts. Experimental Eye Research, 191: 107872. doi: 10.1016/j.exer.2019.107872 [30] Li H, Li C, Lu Q, Su T, Ke T, Li DWC, Yuan M, Liu J, Ren X, Zhang Z, Zeng S, Wang QK, Liu M. 2008. Cataract mutation P20S of alphaB-crystallin impairs chaperone activity of alphaA-crystallin and induces apoptosis of human lens epithelial cells. Biochimica Et Biophysica Acta, 1782(5): 303−309. doi: 10.1016/j.bbadis.2008.01.011 [31] Li HS, Zhou YN, Li L, Li SF, Long D, Chen XL, et al. 2019. HIF-1α protects against oxidative stress by directly targeting mitochondria. Redox Biology, 25: 101109. doi: 10.1016/j.redox.2019.101109 [32] Ma J, Yang YR, Chen W, Chen MH, Wang H, Wang XD, et al. 2016. Fluoxetine synergizes with temozolomide to induce the CHOP-dependent endoplasmic reticulum stress-related apoptosis pathway in glioma cells. Oncology Reports, 36(2): 676−684. doi: 10.3892/or.2016.4860 [33] Malhotra JD, Kaufman RJ. 2007. The endoplasmic reticulum and the unfolded protein response. Seminars in Cell & Developmental Biology, 18(6): 716−731. [34] Martinez A, Lopez N, Gonzalez C, Hetz C. 2019. Targeting of the unfolded protein response (UPR) as therapy for Parkinson’s disease. Biology of the Cell, 111(6): 161−168. doi: 10.1111/boc.201800068 [35] McManus S, Roux S. 2012. The adaptor protein p62/SQSTM1 in osteoclast signaling pathways. Journal of Molecular Signaling, 7: 1. doi: 10.1186/1750-2187-7-1 [36] Moreau KL, King JA. 2012. Protein misfolding and aggregation in cataract disease and prospects for prevention. Trends in Molecular Medicine, 18(5): 273−282. doi: 10.1016/j.molmed.2012.03.005 [37] Mungrue IN, Pagnon J, Kohannim O, Gargalovic PS, Lusis AJ. 2009. CHAC1/MGC4504 Is a Novel Proapoptotic Component of the Unfolded Protein Response, Downstream of the ATF4-ATF3-CHOP Cascade. The Journal of Immunology, 182(1): 466−476. doi: 10.4049/jimmunol.182.1.466 [38] Nahomi RB, Wang B, Raghavan CT, Voss O, Doseff AI, Santhoshkumar P, et al. 2013. Chaperone Peptides of α-Crystallin Inhibit Epithelial Cell Apoptosis, Protein Insolubilization, and Opacification in Experimental Cataracts. Journal of Biological Chemistry, 288(18): 13022−13035. doi: 10.1074/jbc.M112.440214 [39] Pendergrass W, Penn P, Possin D, Wolf N. 2005. Accumulation of DNA, Nuclear and Mitochondrial Debris, and ROS at Sites of Age-Related Cortical Cataract in Mice. Investigative Opthalmology & Visual Science, 46(12): 4661. [40] Roskamp KW, Kozlyuk N, Sengupta S, Bierma JC, Martin RW. 2019. Divalent Cations and the Divergence of βγ-Crystallin Function. Biochemistry, 58(45): 4505−4518. doi: 10.1021/acs.biochem.9b00507 [41] Rozpedek W, Pytel D, Mucha B, Leszczynska H, Diehl JA, Majsterek I. 2016. The Role of the PERK/eIF2α/ATF4/CHOP Signaling Pathway in Tumor Progression During Endoplasmic Reticulum Stress. Current Molecular Medicine, 16(6): 533−544. doi: 10.2174/1566524016666160523143937 [42] Shao Y, Wang L, Guo N, Wang S, Yang L, Li Y, et al. 2018. Cas9-nickase–mediated genome editing corrects hereditary tyrosinemia in rats. Journal of Biological Chemistry, 293(18): 6883−6892. doi: 10.1074/jbc.RA117.000347 [43] Sun W, Xiao X, Li S, Guo X, Zhang Q. 2011. Mutation analysis of 12 genes in Chinese families with congenital cataracts. Molecular Vision, 17: 2197−2206. [44] Tian F, Zhao J, Bu S, Teng H, Yang J, Zhang X, Li X, Dong L. 2020. KLF6 Induces Apoptosis in Human Lens Epithelial Cells Through the ATF4-ATF3-CHOP Axis. Drug Design, Development and Therapy, 14: 1041−1055. doi: 10.2147/DDDT.S218467 [45] Uddin MdS, Tewari D, Sharma G, Kabir MdT, Barreto GE, Bin-Jumah MN, et al. 2020. Molecular Mechanisms of ER Stress and UPR in the Pathogenesis of Alzheimer’s Disease. Molecular Neurobiology, 57(7): 2902−2919. doi: 10.1007/s12035-020-01929-y [46] Wu SY, Zou P, Mishra S, Mchaourab HS. 2018. Transgenic zebrafish models reveal distinct molecular mechanisms for cataract-linked αA-crystallin mutants. PloS One, 13(11): e0207540. doi: 10.1371/journal.pone.0207540 [47] Xia CH, Liu H, Chang B, Cheng C, Cheung D, Wang M, et al. 2006. Arginine 54 and Tyrosine 118 Residues of αA-Crystallin Are Crucial for Lens Formation and Transparency. Investigative Opthalmology & Visual Science, 47(7): 3004. [48] Xu J, Wang H, Wang A, Xu J, Fu C, Jia Z, et al. 2021. βB2 W151R mutant is prone to degradation, aggregation and exposes the hydrophobic side chains in the fourth Greek Key motif. Biochimica Et Biophysica Acta. Molecular Basis of Disease, 1867(2): 166018. doi: 10.1016/j.bbadis.2020.166018 [49] Yang J, Liu J, Zhao S, Tian F. 2020a. N6-Methyladenosine METTL3 Modulates the Proliferation and Apoptosis of Lens Epithelial Cells in Diabetic Cataract. Molecular Therapy. Nucleic Acids, 20: 111−116. doi: 10.1016/j.omtn.2020.02.002 [50] Yang X, Xu J, Fu C, Jia Z, Yao K, Chen X. 2020b. The cataract-related S39C variant increases γS-crystallin sensitivity to environmental stress by destroying the intermolecular disulfide cross-links. Biochemical and Biophysical Research Communications, 526(2): 459−465. doi: 10.1016/j.bbrc.2020.03.072 [51] Yang J, Zhou S, Gu J, Wang Y, Guo M, Liu Y. 2015. Differences in Unfolded Protein Response Pathway Activation in the Lenses of Three Types of Cataracts. PloS One, 10(6): e0130705. doi: 10.1371/journal.pone.0130705 [52] Yu Y, Li J, Xu J, Wang Q, Yu Y, Yao K. 2012. Congenital polymorphic cataract associated with a G to A splice site mutation in the human beta-crystallin gene CRYβA3/A1. Molecular Vision, 18: 2213−2220. [53] Zhou S, Yang J, Wang M, Zheng D, Liu Y. 2020. Endoplasmic reticulum stress regulates epithelial-mesenchymal transition in human lens epithelial cells. Molecular Medicine Reports, 21(1): 173−180. [54] Zhuang J, Cao Z, Zhu Y, Liu L, Tong Y, Chen X, et al. 2019. Mutation screening of crystallin genes in Chinese families with congenital cataracts. Molecular Vision, 25: 427−437. -
ZR-2020-354 Supplementary Figures.pdf
-