Does the Dzungarian racerunner (Eremias dzungarica Orlova, Poyarkov, Chirikova, Nazarov, Munkhbaatar, Munkhbayar & Terbish, 2017) occur in China? Species delimitation and identification with DNA barcoding and morphometric analyses
-
摘要: 密点-荒漠麻蜥复合体是麻蜥属中的胎生类群,是分类复杂类群的著名代表。在此复合体中,最近在蒙古西部和哈萨克斯坦东部发现了一个新种––准噶尔麻蜥(Eremias dzungarica Orlova et al., 2017),在中国西北有明显的分布空缺。在该研究中,我们采用整合分类学方法来探讨准噶尔麻蜥是否确实在中国有分布。在哈萨克斯坦东部和邻近的中国阿勒泰地区采集了30号先前被归为密点麻蜥的标本,对DNA条形码COI基因进行测序,与Orlova等人的条形码数据整合编译,并使用标准和多种条形码技术进行分析。我们检测到此复合体不存在条形码间隙,这表明在有较高种内多样性的Eremias sp. 3中有潜在的隐存种,并且在支系A中有多个新近演化的物种。BIN和GMYC均界定出不切实际的物种数量(分别为23和26);而ABGD、mPTP和BPP显示的物种数量较为保守(分别为10、12和15),与先前根据系统发育树定义的种级谱系基本一致。通过分子系统发育和形态学检查,该研究采集的30只个体均被可靠地鉴定为准噶尔麻蜥,证实了该物种在中国新疆阿勒泰地区有分布。由于该研究的样本量较大,形态学分析与准噶尔麻蜥原始描述存在许多不一致之处,主要表现为性二态性以及不同性状的量值范围更宽。
-
关键词:
- DNA条形码 /
- 麻蜥属 /
- 形态学 /
- 物种界定 /
- 密点-荒漠麻蜥复合体
Abstract: The Eremias multiocellata-przewalskii species complex is a viviparous group in the genus Eremias, and a well-known representative of taxonomically complicated taxa. Within this complex, a new species – E. dzungarica (Orlova et al., 2017 ) – has been described recently from western Mongolia and eastern Kazakhstan, with an apparent distribution gap in northwestern China. In this study, we used an integrative taxonomic framework to address whether E. dzungarica indeed occurs in China. Thirty specimens previously classified as E. multiocellata were collected in eastern Kazakhstan and the adjacent Altay region in China. The cytochrome c oxidase I (COI) barcodes were sequenced and compiled with those fromOrlova et al. (2017) and analyzed with the standard and diverse barcoding techniques. We detected an absence of a barcoding gap in this complex, which indicates potential cryptic species in Eremias sp. 3 with high intraspecific diversity and multiple recently evolved species in Clade A. Both BIN and GMYC suggested an unrealistically large number of species (23 and 26, respectively), while ABGD, mPTP and BPP indicated a more conservative number of species (10, 12, and 15, respectively), largely concordant with the previously defined species-level lineages according to phylogenetic trees. Based on molecular phylogeny and morphological examination, all 30 individuals collected in this study were reliably identified as E. dzungarica – a distinct species – confirming the occurrence of this species in the Altay region, Xinjiang, China. Potentially owing to the larger sample size in this study, our morphological analyses revealed many inconsistencies with the original descriptions of E. dzungarica, which were primarily associated with sexual dimorphism and a broader range of values for various traits.-
Key words:
- DNA barcoding /
- Eremias /
- Morphology /
- Species delimitation /
- Species identification; Viviparous species
-
Figure 1. Collection sites of Eremias multiocellata-przewalskii species complex samples and phylogenetic relationships and species delimitation
A: Sites are numbered as in Supplementary Table S1. Colored symbols correspond to different lineages in Figure 1B and those in Orlova et al. (2017), except light green circles, which represent sampling sites in this study. Orange outlines distribution range of E. dzungarica. B: NJ tree based on barcoding mitochondrial COI haplotypes. Each colored vertical bar represents a species delimited by each method tested. Numbers beside the nodes indicate bootstrap support proportion (BSP) for NJ and ML as well as Bayesian posterior probabilities (BPP), respectively. Dashes beside nodes indicate support values with BSP<50 or BPP<0.5. Colored symbols correspond to Figure 1A, except the light green branches and light green circle, which represent the samples collected in this study.
-
[1] Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, et al. 2007. Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution, 22(3): 148−155. [2] Blair C, Bryson Jr RW. 2017. Cryptic diversity and discordance in single-locus species delimitation methods within horned lizards (Phrynosomatidae: Phrynosoma). Molecular Ecology Resources, 17(6): 1168−1182. doi: 10.1111/1755-0998.12658 [3] Damm S, Schierwater B, Hadrys H. 2010. An integrative approach to species discovery in odonates: from character-based DNA barcoding to ecology. Molecular Ecology, 19(18): 3881−3893. doi: 10.1111/j.1365-294X.2010.04720.x [4] Dayrat B. 2005. Towards integrative taxonomy. Biological Journal of the Linnean Society, 85(3): 407−417. doi: 10.1111/j.1095-8312.2005.00503.x [5] DeSalle R, Goldstein P. 2019. Review and interpretation of trends in DNA barcoding. Frontiers in Ecology and Evolution, 7: 302. doi: 10.3389/fevo.2019.00302 [6] Eremchenko VK, Panfilov AM. 1999. Taxonomic situation of multiocellated racerunner of the "multiocellata" - complex of Kyrghyzstan and neighbor China (Sauria: Lacertidae: Eremias). Science and New Technologies, 4: 112−124. [7] Eremchenko VK, Panfilov AM, Tzarinenko EI. 1992. Eremias multiocellata complex: solution of some problems in systematics of the multiocellated racerunners of Kyrgyzstan (Sauria, Lacertidae, Eremias). In: Conspectus of the Researches on Cytogenetics and Systematics of Some Asiatic Species of Scincidae and Lacertidae. Ilim, Bishkek, 65-80. (in Russian) [8] Guo XG, Dai X, Chen DL, Papenfuss TJ, Ananjeva NB, Melnikov DA, et al. 2011. Phylogeny and divergence times of some racerunner lizards (Lacertidae: Eremias) inferred from mitochondrial 16S rRNA gene segments. Molecular Phylogenetics and Evolution, 61(2): 400−412. doi: 10.1016/j.ympev.2011.06.022 [9] Hebert PDN, Ratnasingham S, deWaard JR. 2003. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society B: Biological Sciences, 270(Suppl 1): S96−S99. [10] Hofmann EP, Nicholson KE, Luque-Montes IR, Köhler G, Cerrato-Mendoza CA, Medina-Flores M, et al. 2019. Cryptic diversity, but to what extent? Discordance between single-locus species delimitation methods within mainland anoles (Squamata: Dactyloidae) of northern central America. Frontiers in Genetics, 10: 11. doi: 10.3389/fgene.2019.00011 [11] Lee MSY. 2004. The molecularisation of taxonomy. Invertebrate Systematics, 18(1): 1−6. doi: 10.1071/IS03021 [12] Miller SE. 2007. DNA barcoding and the renaissance of taxonomy. Proceedings of the National Academy of Sciences of the United States of America, 104(12): 4775−4776. doi: 10.1073/pnas.0700466104 [13] Oba Y, Ôhira H, Murase Y, Moriyama A, Kumazawa Y. 2015. DNA barcoding of Japanese click beetles (Coleoptera, Elateridae). PLoS One, 10(1): e0116612. doi: 10.1371/journal.pone.0116612 [14] Orlova VF, Poyarkov Jr NA, Chirikova MA, Nazarov RA, Munkhbaatar M, Munkhbayar K, et al. 2017. MtDNA differentiation and taxonomy of Central Asian racerunners of Eremias multiocellata-E. przewalskii species complex (Squamata, Lacertidae). Zootaxa, 4282(1): 1−42. [15] Padial JM, Miralles A, De la Riva I, Vences M. 2010. The integrative future of taxonomy. Frontiers in Zoology, 7(1): 16. doi: 10.1186/1742-9994-7-16 [16] Pino-Bodas R, Martín MP, Burgaz AR, Lumbsch HT. 2013. Species delimitation in Cladonia (Ascomycota): a challenge to the DNA barcoding philosophy. Molecular Ecology Resources, 13(6): 1058−1068. [17] Puillandre N, Lambert A, Brouillet S, Achaz G. 2012. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology, 21(8): 1864−1877. doi: 10.1111/j.1365-294X.2011.05239.x [18] Rock J, Costa FO, Walker DI, North AW, Hutchinson WF, Carvalho GR. 2008. DNA barcodes of fish of the Scotia Sea, Antarctica indicate priority groups for taxonomic and systematics focus. Antarctic Science, 20(3): 253−262. doi: 10.1017/S0954102008001120 [19] Rubinoff D, Cameron S, Will K. 2006. A genomic perspective on the shortcomings of mitochondrial DNA for "barcoding" identification. Journal of Heredity, 97(6): 581−594. doi: 10.1093/jhered/esl036 [20] Tao XQ, Cui SP, Jiang ZG, Chu HJ, Li N, Yang DD, et al. 2018. Reptilian fauna and elevational patterns of the reptile species diversity in Altay Prefecture in Xinjiang, China. Biodiversity Science, 26(6): 578−589. (in Chinese) doi: 10.17520/biods.2017194 [21] Will KW, Mishler BD, Wheeler QD. 2005. The perils of DNA barcoding and the need for integrative taxonomy. Systematic Biology, 54(5): 844−851. doi: 10.1080/10635150500354878 [22] Xu X, Kuntner M, Bond JE, Ono H, Ho SYW, Liu FX, et al. 2020. Molecular species delimitation in the primitively segmented spider genus Heptathela endemic to Japanese islands. Molecular Phylogenetics and Evolution, 151: 106900. doi: 10.1016/j.ympev.2020.106900 [23] Yang CQ, Lv Q, Zhang AB. 2020. Sixteen years of DNA barcoding in China: What has been done? What can be done?. Frontiers in Ecology and Evolution, 8: 57. doi: 10.3389/fevo.2020.00057 [24] Zhang F, Jantarit S, Nilsai A, Stevens MI, Ding YH, Satasook C. 2018. Species delimitation in the morphologically conserved Coecobrya (Collembola: Entomobryidae): a case study integrating morphology and molecular traits to advance current taxonomy. Zoologica Scripta, 47(3): 342−356. doi: 10.1111/zsc.12279 [25] Zhao KT. 1999. Lacertidae. In: Zhao EM, Zhao KT, Zhou KY. Fauna Sinica, Reptilia (Squamata: Lacertilia), Vol. 2. Beijing: Science Press, 231–236. (in Chinese) -
ZR-2020-318 Supplementary Materials.pdf
-