留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Diet, food availability, and climatic factors drive ranging behavior in white-headed langurs in the limestone forests of Guangxi, southwest China

Ke-Chu Zhang Qi-Hai Zhou Huai-Liang Xu Zhong-Hao Huang

Ke-Chu Zhang, Qi-Hai Zhou, Huai-Liang Xu, Zhong-Hao Huang. Diet, food availability, and climatic factors drive ranging behavior in white-headed langurs in the limestone forests of Guangxi, southwest China. Zoological Research, 2021, 42(4): 406-411. doi: 10.24272/j.issn.2095-8137.2020.292
Citation: Ke-Chu Zhang, Qi-Hai Zhou, Huai-Liang Xu, Zhong-Hao Huang. Diet, food availability, and climatic factors drive ranging behavior in white-headed langurs in the limestone forests of Guangxi, southwest China. Zoological Research, 2021, 42(4): 406-411. doi: 10.24272/j.issn.2095-8137.2020.292

食物组成,食物可利用性和气候因素驱动白头叶猴的漫游行为

doi: 10.24272/j.issn.2095-8137.2020.292

Diet, food availability, and climatic factors drive ranging behavior in white-headed langurs in the limestone forests of Guangxi, southwest China

Funds: This study was supported by the National Natural Science Foundation of China (31960106, 31870355, 31301893)
More Information
  • 摘要: 生物和非生物因素的变化影响着动物有机体的代谢效率,迫使动物调整行为模式。2016年9月至2017年8月,我们收集了广西崇左白头叶猴国家级自然保护区4群白头叶猴(Trachypithecus leucocephalus)的漫游行为数据,分析了生态因素对白头叶猴漫游行为的影响,探究该物种适应石灰岩生境的行为机制。结果表明,白头叶猴的漫游行为受食物组成、食物可利用性和气候因素的显著影响。具体而言,猴群的移动时间和日漫游距离随食物多样性的增加而增加,与果实可利用性和林下相对湿度呈正相关关系,而与裸露岩石的温度和相对湿度呈负相关关系。白头叶猴保持稳定的移动和觅食时间,日漫游距离较短,可能采取了一种节能的行为策略来应对破碎化喀斯特森林中的食物短缺和高温。本研究表明食物可利用性和温度对石山森林灵长类动物的漫游行为具有重要影响。
  • Figure  1.  Monthly temperature, relative humidity, rainfall, and food availability index during study period

    A: Monthly temperature (°C) and relative humidity (%). HTF: Mean highest temperature of forest; LTF: Mean lowest temperature of forest; MTF: Mean temperature of forest; RHF: Mean relative humidity of forest; HTR: Mean highest temperature of bare rock; LTR: Mean lowest temperature of bare rock; MTR: Mean temperature of bare rock; RHR: Mean relative humidity of bare rock. B: Monthly rainfall (mm) and food availability index. YL-FAI: Food availability index for young leaves; ML-FAI: Food availability index for mature leaves; FL-FAI: Food availability index for flowers; FR-FAI: Food availability index for fruits.

    Table  1.   Ranging behavior and dietary composition of white-headed langurs, and food availability and climatic factors during study period

    GroupSeasonTime budgets (% of total activity time, mean±SD)Daily path length (m)
    RestingMovingFeedingGroomingPlayingOther
    G-DSAnnual46.3±7.419.7±3.623.9±4.59.1±3.80.9±0.90.1±0.1 455.6±43.8
    G-ZWYAnnual41.2±7.121.5±4.723.8±4.07.7±3.95.5±2.30.3±0.3 499.1±105.7
    G-LZAnnual51.6±7.415.0±3.924.5±3.98.4±3.10.1±0.40.4±0.6 430.4±78.0
    G-NNAnnual49.8±8.315.8±4.425.4±3.28.7±3.10.1±0.10.2±0.2 363.1±61.4
    MeanAnnual47.2±8.318.0±4.924.4±3.98.5±3.41.7±2.70.3±0.4 437.1±89.3
    Dry51.0±8.817.5±5.924.2±4.75.8±2.21.1±2.00.4±0.5 434.9±100.2
    Rainy43.4±5.818.5±3.624.6±2.811.2±1.92.2±3.30.1±0.2 439.2±78.9
    GroupSeasonDiet composition (% of feeding time, mean±SD) Dietary diversity index
    Young leavesMature leavesFlowersFruitsOther
    G-DSAnnual71.6±12.214.8±7.91.1±1.16.6±6.05.8±5.9 5.11±0.57
    G-ZWYAnnual71.4±14.215.2±12.22.4±2.84.8±2.86.2±3.7 4.94±0.57
    G-LZAnnual68.7±11.817.8±111.6±1.36.9±5.55.1±3.3 4.82±0.48
    G-NNAnnual67.5±7.915.6±9.03.8±2.88.1±5.34.9±3.8 4.99±0.28
    MeanAnnual69.8±11.516.7±9.92.2±2.36.6±5.05.5±4.2 4.96±0.49
    Dry62.3±10.523.4±8.62.1±2.65.2±3.77.1±5.3 4.98±0.63
    Rainy77.4±6.510.0±5.82.4±2.18.0±5.83.9±1.8 4.95±0.30
    SeasonClimatic factors, temperature (℃), humidity (%), rainfall (mm), and daylength (min) (mean±SD)
    HTFMTFRHFHTRMTRRHRRainfallDaylength
    Annual26.9±4.522.5±4.784.9±5.341.9±6.826.3±5.173.7±4.9365.2±291.3774.2±59.8
    Dry24.8±5.220.0±5.181.3±5.239.2±5.523.6±4.972.6±4.9167.9±125.8725.4±31.7
    Rainy29.1±2.725.0±2.888.5±2.444.8±7.229.1±3.974.8±5.1562.5±278.3823.1±33.9
    SeasonFood availability index (FAI) (mean±SD)
    Young leaves-FAIMature leaves-FAIFlowers-FAIFruits-FAI
    Annual10 870.4±4 664.231 775.3±5 613.81 126.3±1 357.72 265.2±1 855.2
    Dry7 489.8±4 272.930 358.0±5 027.5500.8±196.8912.3±524.2
    Rainy14 250.9±1 474.433 192.6±6 263.81 751.7±1 754.43 618.1±1 704.1
    HTF: Mean highest temperature of forest; MTF: Mean temperature of forest; RHF: Mean relative humidity of forest; HTR: Mean highest temperature of bare rock; MTR: Mean temperature of bare rock; RHR: Mean relative humidity of bare rock.
    下载: 导出CSV
  • [1] Agetsuma N. 1995. Foraging strategies of Yakushima macaques (Macaca fuscata yakui). International Journal of Primatology, 16(4): 595−609. doi: 10.1007/BF02735283
    [2] Aristizabal JF, Lévêque L, Chapman CA, Serio-Silva JC. 2018. Impacts of temperature on behaviour of the Mexican endangered black howler monkey Alouatta pigra Lawrence, 1933 (Primates: Atelidae) in a Fragmented Landscape. Acta Zoologica Bulgarica, 70(3): 377−382.
    [3] Arroyo-Rodríguez V, Mandujano S. 2006. Forest fragmentation modifies habitat quality for Alouatta palliata. International Journal of Primatology, 27(4): 1079−1096. doi: 10.1007/s10764-006-9061-0
    [4] Bach TH, Chen J, Hoang MD, Beng KC, Nguyen VT. 2017. Feeding behavior and activity budget of the southern yellow-cheeked crested gibbons (Nomascus gabriellae) in a lowland tropical forest. American Journal of Primatology, 79(8): e22667. doi: 10.1002/ajp.22667
    [5] Barrett AS. 2009. Spatial and Temporal Patterns in Resource Dispersion and the Structure of Range Use and Co-existence in a Social Omnivore Chlorocebus aethiops. Ph.D. dissertation, University of South Africa, South Africa.
    [6] Brockman DK, Van Schaik CP. 2005. Seasonality in Primates: Studies of Living and Extinct Human and Non-Human Primates. Cambridge: Cambridge University Press.
    [7] Chatelain M, Halpin CG, Rowe C. 2013. Ambient temperature influences birds’ decisions to eat toxic prey. Animal Behaviour, 86(4): 733−740. doi: 10.1016/j.anbehav.2013.07.007
    [8] Dacke M, Nilsson DE, Scholtz CH, Byrne M, Warrant EJ. 2003. Animal behaviour: insect orientation to polarized moonlight. Nature, 424(6944): 33.
    [9] Dunbar RIM, Korstjens AH, Lehmann J. 2009. Time as an ecological constraint. Biological Reviews, 84(3): 413−429. doi: 10.1111/j.1469-185X.2009.00080.x
    [10] Eccard JA, Ylönen H. 2003. Interspecific competition in small rodents: from populations to individuals. Evolutionary Ecology, 17(4): 423−440. doi: 10.1023/A:1027305410005
    [11] Eustace A, Kisingo AW, Kahana LW, Lyimo EH. 2015. Activity patterns of Black-and-White Colobus Monkey (Colobus guereza caudatus) in Rau forest reserve, Tanzania. Research & Reviews: Journal of Ecology and Environmental Sciences, 3(4): 17−24.
    [12] Fan PF, Fei HL, Ma CY. 2012. Behavioral responses of Cao Vit gibbon (Nomascus nasutus) to variations in food abundance and temperature in Bangliang, Jingxi, China. American Journal of Primatology, 74(7): 632−641. doi: 10.1002/ajp.22016
    [13] Fan PF, Garber P, Ma C, Ren GP, Liu CM, Chen XY, et al. 2015. High dietary diversity supports large group size in Indo-Chinese gray langurs in Wuliangshan, Yunnan, China. American Journal of Primatology, 77(5): 479−491. doi: 10.1002/ajp.22361
    [14] Guan ZH, Ma CY, Fei HL, Huang B, Ning WH, Ni QY, et al. 2018. Ecology and social system of northern gibbons living in cold seasonal forests. Zoological Research, 39(4): 255−265. doi: 10.24272/j.issn.2095-8137.2018.045
    [15] Hanya G. 2004. Seasonal variations in the activity budget of Japanese macaques in the coniferous forest of Yakushima: effects of food and temperature. American Journal of Primatology, 63(3): 165−177. doi: 10.1002/ajp.20049
    [16] Hanya G, Kiyono M, Hayaishi S. 2007. Behavioral thermoregulation of wild Japanese macaques: comparisons between two subpopulations. American Journal of Primatology, 69(7): 802−815. doi: 10.1002/ajp.20397
    [17] Hanya G, Otani Y, Hongo S, Honda T, Okamura H, Higo Y. 2018. Activity of wild Japanese macaques in Yakushima revealed by camera trapping: patterns with respect to season, daily period and rainfall. PLoS One, 13(1): e0190631. doi: 10.1371/journal.pone.0190631
    [18] Hemingway CA, Bynum N. 2005. The influence of seasonality on primate diet and ranging. In: Brockman DK, Van Schaik CP. Seasonality in Primates: Studies of Living and Extinct Human and Non-Human Primates. Cambridge: Cambridge University Press, 57–105.
    [19] Hendershott R, Behie A, Rawson B. 2016. Seasonal variation in the activity and dietary budgets of Cat Ba langurs (Trachypithecus poliocephalus). International Journal of Primatology, 37(4−5): 586−604. doi: 10.1007/s10764-016-9923-z
    [20] Hill RA, Barrett L, Gaynor D, Weingrill T, Dixon P, Payne H, et al. 2003. Day length, latitude and behavioural (in)flexibility in Baboons (Papio cynocephalus ursinus). Behavioral Ecology and Sociobiology, 53(5): 278−286. doi: 10.1007/s00265-003-0590-7
    [21] Huang CM. 2002. White-Headed Langurs in China. Guilin: Guangxi Normal University Press. (in Chinese)
    [22] Huang CM, Li YB, Zhou QH, Feng YX, Chen Z, Yu H, et al. 2008. Karst habitat fragmentation and the conservation of the white-headed langur (Trachypithecus leucocephalus) in China. Primate Conservation, 23(1): 133−139. doi: 10.1896/052.023.0116
    [23] Huang CM, Zhou QH, Wei X, Wu JB. 2018. White-headed langur (Trachypithecus leucocephalus) population dynamic in past three decades. In: Proceedings of the 6th Asian Primates Symposium & 5th Asian (Indochinese) Primates Conservation Symposium. Abstract booklet, EHF-08.
    [24] Huang ZH, Huang CM, Tang CB, Huang LB, Tang HX, Ma GZ, et al. 2015. Dietary adaptations of Assamese macaques (Macaca assamensis) in limestone forests in Southwest China. American Journal of Primatology, 77(2): 171−185. doi: 10.1002/ajp.22320
    [25] Huang ZH, Yuan PS, Huang HL, Tang XP, Xu WJ, Huang CM, et al. 2017. Effect of habitat fragmentation on ranging behavior of white-headed langurs in limestone forests in southwest China. Primates, 58(3): 423−434. doi: 10.1007/s10329-017-0600-4
    [26] Isbell LA. 1994. Predation on primates: ecological patterns and evolutionary consequences. Evolutionary Anthropology: Issues, News, and Reviews, 3(2): 61−71.
    [27] Kelley EA, Jablonski NG, Chaplin G, Sussman RW, Kamilar JM. 2016. Behavioral thermoregulation in Lemur catta: the significance of sunning and huddling behaviors. American Journal of Primatology, 78(2): 745−754.
    [28] Konstant WR, Mittermeier RA, Butynski TM, Eudey A, Ganzhorn J, Kormos R, et al. 2003. The world’s top 25 most endangered primates–2002. Asian Primates, 8(3-4): 29−34.
    [29] Korstjens AH, Lehmann J, Dunbar RIM. 2010. Resting time as an ecological constraint on primate biogeography. Animal Behaviour, 79(2): 361−374. doi: 10.1016/j.anbehav.2009.11.012
    [30] Li YB, Huang XH, Huang ZH. 2020a. Behavioral adjustments and support use of François' langur in limestone habitat in Fusui, China: implications for behavioral thermoregulation. Ecology and Evolution, 10(11): 4956−4967. doi: 10.1002/ece3.6249
    [31] Li YH, Ma GZ, Zhou QH, Huang ZH. 2020b. Seasonal variation in activity budget of assamese macaques in limestone forest of southwest Guangxi, China. Folia Primatologica, 91(5): 495−511. doi: 10.1159/000506593
    [32] Li YH, Ma GZ, Zhou QH, Huang ZH. 2020c. Ranging patterns and foraging patch utilization of assamese macaques inhabiting limestone forests in southwest guangxi, China. Global Ecology and Conservation, 21: e00816. doi: 10.1016/j.gecco.2019.e00816
    [33] Li ZY, Rogers ME. 2005. Habitat quality and range use of white-headed langurs in Fusui, China. Folia Primatologica, 76(4): 185−195. doi: 10.1159/000086020
    [34] Mandl I, Holderied M, Schwitzer C. 2018. The Effects of Climate Seasonality on Behavior and Sleeping Site Choice in Sahamalaza Sportive Lemurs, Lepilemur sahamalaza. International Journal of Primatology, 39(6): 1039−1067. doi: 10.1007/s10764-018-0059-1
    [35] McFarland R, Fuller A, Hetem RS, Mitchell D, Maloney SK, Henzi SP, et al. 2015. Social integration confers thermal benefits in a gregarious primate. Journal of Animal Ecology, 84(3): 871−878. doi: 10.1111/1365-2656.12329
    [36] McLester E, Brown M, Stewart FA, Piel AK. 2019. Food abundance and weather influence habitat-specific ranging patterns in forest- and savanna mosaic-dwelling red-tailed monkeys (Cercopithecus ascanius). American Journal of Physical Anthropology, 170(2): 217−231. doi: 10.1002/ajpa.23920
    [37] Ning WH, Guan ZH, Huang B, Fan PF, Jiang XL. 2019. Influence of food availability and climate on behavior patterns of western black crested gibbons (Nomascus concolor) at Mt. Wuliang, Yunnan, China. American Journal of Primatology, 81(12): e23068.
    [38] Pörtner HO, Bennett AF, Bozinovic F, Clarke A, Lardies MA, Lucassen M, et al. 2006. Trade‐offs in thermal adaptation: the need for a molecular to ecological integration. Physiological and Biochemical Zoology, 79(2): 295−313. doi: 10.1086/499986
    [39] Stephens DW, Brown JS, Ydenberg RC. 2007. Foraging: Behavior and Ecology. Chicago: University of Chicago Press.
    [40] Thompson CL, Williams SH, Glander KE, Vinyard CJ. 2016. Measuring microhabitat temperature in arboreal primates: a comparison of on-animal and stationary approaches. International Journal of Primatology, 37(4−5): 495−517. doi: 10.1007/s10764-016-9917-x
    [41] Tuff KT, Tuff T, Davies KF. 2016. A framework for integrating thermal biology into fragmentation research. Ecology Letter, 19(4): 361−374. doi: 10.1111/ele.12579
    [42] Van Schaik CP, Pfannes K. 2005. Tropical climates and phenology: a primate perspective. In: Brockman DK, Van Schaik CP. Seasonality in Primates: Studies of Living and Extinct Human and Non-human Primates. Cambridge: Cambridge University Press, 23–54.
    [43] Van Soest PJ. 1994. Nutritional Ecology of the Ruminant. New York: Cornell University Press.
    [44] Whiteman HH, Buschhaus NL. 2003. Behavioral thermoregulation in field populations of amphibian larvae. In: Ploger BJ, Yasukawa K. Exploring Animal Behavior in Laboratory and Field: An Hypothesis-Testing Approach to the Development, Causation, Function, and Evolution of Animal Behavior. London: Academic Press, 79–84.
    [45] Wong BBM, Candolin U. 2015. Behavioral responses to changing environments. Behavioral Ecology, 26(3): 665−673. doi: 10.1093/beheco/aru183
    [46] Zhang KC, Yuan PS, Huang HL, Tang XP, Zhou QH, Huang ZH. 2017. Inter-site variation in dietary composition of white-headed langurs (Trachypithecus leucocephalus). Journal of Guangxi Normal University: Natural Science Edition, 35(1): 75−81. (in Chinese)
    [47] Zhang KC, Zhou QH, Xu HL, Huang ZH. 2020. Effect of group size on time budgets and ranging behavior of white-headed langurs in limestone forest, southwest China. Folia Primatologica, 91(3): 188−201. doi: 10.1159/000502812
    [48] Zhou QH, Tang XP, Huang HX, Huang CM. 2011. Factors affecting the ranging behavior of white-headed langurs (Trachypithecus leucocephalus). International Journal of Primatology, 32(2): 511−523. doi: 10.1007/s10764-010-9486-3
    [49] Zhou QH, Tang Z, Li YB, Huang CM. 2013. Food diversity and choice of white-headed langur in fragmented limestone hill habitat in Guangxi, China. Acta Ecologica Sinica, 33(2): 109−113. doi: 10.1016/j.chnaes.2013.01.007
    [50] Zhou QH, Wei FW, Huang CM, Li M, Ren BP, Luo B. 2007. Seasonal variation in the activity patterns and time budgets of Trachypithecus françoisi in the Nonggang Nature Reserve, China. International Journal of Primatology, 28(3): 657−671. doi: 10.1007/s10764-007-9144-6
  • ZR-2020-292 Supplementary Materials.pdf
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  1251
  • HTML全文浏览量:  561
  • PDF下载量:  275
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-28
  • 录用日期:  2021-03-28
  • 网络出版日期:  2021-05-08
  • 刊出日期:  2021-07-18

目录

    /

    返回文章
    返回