Description of a new species of the genus Uropsilus (Eulipotyphla: Talpidae: Uropsilinae) from the Dabie Mountains, Anhui, Eastern China
-
摘要: 该研究中,我们在安徽大别山地区采集到了鼩鼹类标本四号,根据已发表的文献和资料进行对比后,发现这些标本类似于分布在中国西南山区的亚洲鼩鼹。通过对上述标本和鼩鼹属物种的形态学比较、系统发育分析和物种界定分析,发现该鼩鼹标本应为一新种。研究中还对该新种进行了描述,将其命名为Uropsilus dabieshanensis sp. nov. (大别山鼩鼹)。大别山鼩鼹的发现不仅使鼩鼹属在中国的分布范围扩展到了中国东部的大别山区,同时也提升了该属的物种多样性水平。Abstract: During a terrestrial vertebrate survey of the Dabie Mountains in Anhui Province, eastern China, we collected four Asian shrew mole specimens (hereafter, shrew moles). Based on published literature and comparison with previously collected materials, the four specimens were similar to shrew moles from the mountains of Southwest China; however, no species in this group has been previously recorded from the Dabie Mountains. The genetic and morphological characteristics of the specimens were analyzed, based upon which a new species of shrew mole is described, named Uropsilus dabieshanensis sp. nov.
-
Key words:
- Asian shrew mole /
- Morphology /
- Phylogenetics /
- Species delimitation
-
Figure 1. Distribution, molecular, and morphological comparisons ofUropsilus,with views and crania ofUropsilus dabieshanensissp. nov.
A: Sampling sites and species distribution map of Uropsilus. B: Molecular phylogenetic tree constructed using BEAST based on mitochondrial-nuclear concatenated data. Preceding numbers on branches are median divergence times and following numbers represent Bayesian posterior probability. Black lines represent species delimitation results of bPTP, ABGD, and BPP. C: Dorsal, ventral, and lateral views of holotype of Uropsilus dabieshanensis sp. nov. (AE1807FZL007). D: Results of PCA (a) and DFA (b). E: Images of crania and mandibles of holotype (left: AE1807FZL007) and paratype (right: AE1612YLP017). F: Comparison of local mandibular tooth characteristics in six species of Uropsilus. Uropsilus dabieshanensis sp. nov. (a), U. andersoni (b), U. soricipes (c), U. gracilis (d), U. investigator (e), and U. aequodonenia (f).
Table 1. Means (±SD) and ranges of skull measurements (mm) in morphometric analyses of genus Uropsilus
Uropsilus dabieshanensis sp. nov. (n=4) U. gracilis(n=4) U. soricipes (n=9) U. aequodonenia(n=3) U. investigator (n=4) U. andersoni(n=3) PL 21.11–21.76 20.58–21.78 20.36–21.45 20.75–22.03 20.51–21.56 20.79–22.28 21.50±0.29 21.37±0.56 21.03±0.42 21.52±0.68 21.10±0.44 21.66±0.77 BL 17.59–17.98 16.08–17.34 16.88–17.81 17.19–17.86 16.47–17.23 16.37–17.50 17.83±0.17 16.86±0.55 17.36±0.30 17.53±0.34 16.80±0.32 17.03±0.59 GNB 10.93–11.52 10.93–11.55 10.60–11.43 11.12–11.72 10.44–11.42 11.06–11.46 11.23±0.33 11.34±0.28 11.15±0.32 11.43±0.30 10.84±0.43 11.30±0.211 ZB 10.40–11.02 10.12–10.30 10.10–10.43 10.64–11.18 9.70–10.66 10.81–11.17 10.68±0.26 10.21±0.91 10.30±0.13 10.92±0.27 10.19±0.44 10.97±0.18 GBSn 7.94–8.78 6.70–7.64 7.45–7.69 7.42–8.02 7.13–7.35 7.66–7.79 8.29±0.40 7.28±0.44 7.58±0.74 7.76±0.31 7.23±0.09 7.72±0.07 LBO 5.27–.5.91 5.25–5.50 5.36–5.58 5.54–5.68 5.12–5.36 5.34–5.54 5.52±0.28 5.39±0.11 5.46±0.09 5.62±0.07 5.24±0.10 5.41±0.11 HB 6.57–6.84 7.18–7.61 6.58–7.12 6.60–7.51 6.48–7.08 6.65–7.51 6.76±0.12 7.43±0.21 6.80±0.18 7.02±0.46 6.87±0.27 7.18±0.46 M2-M2 6.85–7.04 6.19–6.27 6.25–6.69 6.21–6.69 5.58–6.21 5.93–6.48 6.95±0.80 6.24±0.03 6.40±0.15 6.49±0.25 5.88±0.26 6.27±0.30 MPL 10.08–10.32 9.68–10.26 9.61–10.20 9.93–10.31 9.48–10.03 9.84–10.06 10.24±0.11 9.98±0.30 9.97±0.17 10.15±0.20 9.85±0.25 9.94±0.11 LMTR 8.40–8.79 8.43–9.09 8.15–8.65 8.30–9.22 8.21–9.06 8.49–9.07 8.64±0.17 8.80±0.27 8.45±0.15 8.69±0.48 8.61±0.35 8.75±0.30 LM 14.47–15.09 14.01–15.00 12.18–14.30 14.30–14.51 11.95–13.42 12.22–14.64 14.81±0.26 14.35±0.46 13.95±0.68 14.41±0.11 12.37±0.70 13.69±1.29 PL: Profile length; BL: Basal length; GNB: Greatest neurocranium breadth; ZB: Zygomatic breadth; GBSn: Greatest breadth of snout; LBO: Least breadth between orbits; HB: Height of braincase; MPL: Median palatal length; LMTR: Length of mandibular tooth row including first incisor; M2-M2: Greatest width measured at anterior labial margins of second mandibular; LM: Length of mandible not including first incisor. -
[1] Allen GM. 1923. New Chinese insectivores. American Museum Novitates, Number 100. New York: The American Museum of Natural History, 1−11. [2] Allen GM. 1938. The Mammals of China and Mongolia. Part 1. New York: American Museum of Natural History. [3] Douady CJ, Douzery EJP. 2003. Molecular estimation of eulipotyphlan divergence times and the evolution of “Insectivora”. Molecular Phylogenetics and Evolution, 28(2): 285−296. doi: 10.1016/S1055-7903(03)00119-2 [4] Ellerman JRQ, Morrison-Scott TCS. 1951. Checklist of Palaearctic and Indian Mammals 1758 to 1946. London: British Museum (Natural History), 1−810. [5] Feng WK. 1976. Geomorphotectonic features of the dabieshan area, China. Chinese Journal of Geology, 11(3): 266−276. (in Chinese) [6] He K, Gutiérrez EE, Heming NM, Koepfli KP, Wan T, He SW, et al. 2019. Cryptic phylogeographic history sheds light on the generation of species diversity in sky-island mountains. Journal of Biogeography, 46(10): 2232−2247. doi: 10.1111/jbi.13664 [7] He K, Shinohara A, Helgen KM, Springer MS, Jiang XL, Campbell KL. 2017. Talpid mole phylogeny unites shrew moles and illuminates overlooked cryptic species diversity. Molecular Biology and Evolution, 34(1): 78−87. doi: 10.1093/molbev/msw221 [8] Hoffmann RS, Lunde D. 2008. Soricomorpha. In: Smith AT, Xie Y. A Guide to the Mammals of China. Princeton, New Jersey: Princeton University Press. [9] Howell AB. 1929. Mammals from China in the collections of the United States National Museum. Proceedings of the United States National Museum, 75(2772): 1−82. doi: 10.5479/si.00963801.75-2772.1 [10] Hutterer R. 2005. Order soricomorpha. In: Wilson DE, Reeder DM. Mammal Species of the World: A Taxonomic and Geographic Reference. 3rd ed. Baltimore: Johns Hopkins University Press, 220−311. [11] Irwin DM, Kocher TD, Wilson AC. 1991. Evolution of the cytochrome b gene of mammals. Journal of Molecular Evolution, 32(2): 128−144. doi: 10.1007/BF02515385 [12] IUCN. 2017. The IUCN red list of threatened species. http://www.iucnredlist.org. [13] Jiang ZG, Jiang JP, Wang YZ, Zhang E, Zhang YY, Li LL, et al. 2016. Red list of China’s vertebrates. Biodiversity Science, 24(5): 500−551. (in Chinese) doi: 10.17520/biods.2016076 [14] Jiang ZG, Liu SY, Wu Y, Jiang XL, Zhou KY. 2017. China’s mammal diversity (2nd edition). Biodiversity Science, 25(8): 886−895. (in Chinese) doi: 10.17520/biods.2017098 [15] Liu SY, Chen SD, He K, Tang MK, Liu Y, Jin W, et al. 2019. Molecular phylogeny and taxonomy of subgenus Eothenomys (Cricetidae: Arvicolinae: Eothenomys) with the description of four new species from Sichuan, China. Zoological Journal of the Linnean Society, 186(2): 569−598. doi: 10.1093/zoolinnean/zly071 [16] Liu Y, Liu SY, Sun ZY, Guo P, Fan ZX, Murphy RW. 2013. A new species of Uropsilus (Talpidae: Uropsilinae) from Sichuan, China. Acta Theriologica Sinica, 33(2): 113−122. (in Chinese) [17] Milne-Edwards A. 1871. Descriptions of new species, in footnotes. In: David A. Journal d’un voyage en Mongolia et en Chine fait en 1866−68. Paris: Nouvelles Archives du Museum d’Histoire Naturelle, 75−100. [18] Motokawa M. 2004. Phylogenetic relationships within the family Talpidae (Mammalia: Insectivora). Journal of Zoology, 263(2): 147−157. doi: 10.1017/S0952836904004972 [19] Osgood WH. 1937. Variable dentition in a Chinese insectivore. Field Museum of Natural History, Zoological Series, 20(27): 365−368. [20] Puillandre N, Lambert A, Brouillet S, Achaz G. 2012. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology, 21(8): 1864−1877. doi: 10.1111/j.1365-294X.2011.05239.x [21] Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. 2nd ed. New York: Cold Spring Harbor Laboratory Press, Cold Springs Harbor, 1659. [22] Sánchez-Villagra MR, Horovitz I, Motokawa M. 2006. A comprehensive morphological analysis of talpid moles (Mammalia) phylogenetic relationships. Cladistics, 22(1): 59−88. doi: 10.1111/j.1096-0031.2006.00087.x [23] Smith AT, Xie Y. 2008. A Guide to the Mammals of China. Princeton, New Jersey: Princeton University Press, 216−217. [24] Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. 2018. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution, 4(1): vey016. [25] Thomas O. 1911. The Duke of Bedford’s Zoological exploration of eastern Asia. —XIII. On mammals from the provinces of Kan-su and Sze-chwan, western China. Proceedings of the Zoological Society of London, 81(1): 158−180. [26] Thomas O. 1912. The Duke of Bedford’s zoological exploration of eastern Asia. -XV. On mammals from the provinces of Szechwan and Yunnan, western China. Proceedings of the Zoological Society of London, 82(1): 127−141. [27] Thomas O. 1922. On mammals from the Yunnan highlands collected by Mr. George Forrest and presented to the British Museum by Col. Stephenson R. Clarke, D.S.O. Annals and Magazine of Natural History, 10(58): 391−406. [28] Wan T. 2015. Phylogeny, Phylogeography and Integrative Taxonomy of Asiatic Shrew Moles (Uropsilinae). Ph.D. dissertation, University of Chinese Academy of Sciences, Beijing. (in Chinese) [29] Wan T, He K, Jiang XL. 2013. Multilocus phylogeny and cryptic diversity in Asian shrew-like moles (Uropsilus, Talpidae): implications for taxonomy and conservation. BMC Evolutionary Biology, 13(1): 232. doi: 10.1186/1471-2148-13-232 [30] Wan T, He K, Jin W, Liu SY, Chen ZZ, Zhang B, et al. 2018. Climate niche conservatism and complex topography illuminate the cryptic diversification of Asian shrew-like moles. Journal of Biogeography, 45(10): 2400−2414. doi: 10.1111/jbi.13401 [31] Wang YX, Yang G. 1989. Editor-in-Chief of Yunnan Disease Control Office and Yunnan Health and Anti-epidemic Station: Yunnan Medical Animal Directory. Kunming: Yunnan Science and Technology Press, 202−210. (in Chinese) [32] Yang ZH, Rannala B. 2010. Bayesian species delimitation using multilocus sequence data. Proceedings of the National Academy of Sciences of the United States of America, 107(20): 9264−9269. doi: 10.1073/pnas.0913022107 [33] Zhang JJ, Kapli P, Pavlidis P, Stamatakis A. 2013a. A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29(22): 2869−2876. doi: 10.1093/bioinformatics/btt499 [34] Zhang LN, Rong CH, He Y, Guan Q, He B, Zhu XW, et al. 2013b. A bird’s eye view of the algorithms and software packages for reconstructing phylogenetic trees. Zoological Research, 34(6): 640−650. (in Chinese) -
ZR-2020-266 Supplementary Materials.pdf
-