亚洲叶猴属Trachypithecus线粒体系统发育关系-兼记菲氏叶猴Trachypithecus phayrei (Blyth, 1847)分类问题及记该属一新种
doi: 10.24272/j.issn.2095-8137.2020.254
Mitogenomic phylogeny of the Asian colobine genus Trachypithecus with special focus on Trachypithecus phayrei (Blyth, 1847) and description of a new species
-
摘要: 叶猴属Trachypithecus在亚洲疣猴中多样性最高、地理分布最广,目前已知20种,其多样性被划分为四大种组。尽管已有部分研究利用形态学和分子系统学证据对该属开展了部分工作,目前对于其演化历史和系统地理学仍知之甚少。其中,菲氏叶猴Trachypithecus phayrei是叶猴属分布最广的物种之一,但目前对于该种的种下分类及不同亚种的具体分布还存在争议。因此,为了更好的探究叶猴属的系统演化关系,同时理清菲氏叶猴的种下分类问题,本研究通过对野外粪便样品及博物馆实体标本的研究分析,获得了包括2分模式标本在内的41份线粒体基因组数据,并以此构建了叶猴属系统演化关系。结果成功解析了叶猴属物种间的演化关系,并指出戴帽叶猴T. pileatus种组的物种首先从其余物种中分化,其次是黑叶猴T. francoisi种组,而银叶猴种组T. cristatus和郁乌叶猴T. obscurus种组分化最晚。四大种组相互分化的时间大约在4.5–3.1个百万年前,而每个种组内物种形成的时间则更晚,约在1.6–0.3个百万年前。就菲氏叶猴而言,结果显示其包含了3个分化时间在1.0–0.9个百万年的支系,暗示了其实际包括了3个独立物种。基于系统演化物种概念,在综合考虑形态、分子和生态学差异后,本研究将原菲氏叶猴的滇西亚种T. p. shanicus提升至种级,并在此将缅甸中部的种群描述为一新种,并更新了厘定后三种的具体分布信息。本研究结果再次表明了博物馆馆藏标本对于科学研究的重要性,同时为整个叶猴属及菲氏叶猴这一物种的系统演化关系提供了更新数据。Abstract: Trachypithecus, which currently contains 20 species divided into four groups, is the most speciose and geographically dispersed genus among Asian colobines. Despite several morphological and molecular studies, however, its evolutionary history and phylogeography remain poorly understood. Phayre’s langur (Trachypithecus phayrei) is one of the most widespread members of the genus, but details on its actual distribution and intraspecific taxonomy are limited and controversial. Thus, to elucidate the evolutionary history of Trachypithecus and to clarify the intraspecific taxonomy and distribution of T. phayrei, we sequenced 41 mitochondrial genomes from georeferenced fecal samples and museum specimens, including two holotypes. Phylogenetic analyses revealed a robustly supported phylogeny of Trachypithecus, suggesting that the T. pileatus group branched first, followed by the T. francoisi group, and the T. cristatus and T. obscurus groups most recently. The four species groups diverged from each other 4.5–3.1 million years ago (Ma), while speciation events within these groups occurred much more recently (1.6–0.3 Ma). Within T. phayrei, we found three clades that diverged 1.0–0.9 Ma, indicating the existence of three rather than two taxa. Following the phylogenetic species concept and based on genetic, morphological, and ecological differences, we elevate the T. phayrei subspecies to species level, describe a new species from central Myanmar, and refine the distribution of the three taxa. Overall, our study highlights the importance of museum specimens and provides new insights not only into the evolutionary history of T. phayrei but the entire Trachypithecus genus as well.
-
Key words:
- Colobinae /
- Integrative zoology /
- Mitochondrial genome /
- Museum specimens /
- New species
-
Figure 1. Distribution of Trachypithecus phayrei according to IUCN Red List (Bleisch et al., 2020)
Numbers indicate sample locations for genetic analysis: 1: Letsegan, 2: Kin, 3: Dudaw-Taung, 4: Ramree Island, 5: near Mount Arakan, 6: Mount Popa, 7: 30 miles northwest of Toungoo, 8: Bago Yoma, 9: South Zamayi Reserve, 10: Myogyi Monastery, 11: Panlaung-Pyadalin Cave Wildlife Sanctuary, 12: Mount Yathae Pyan, 13: Yado, 14: Ho Mu Shu Pass, 15: Gaoligong Mountains National Park, 16: Cadu Ciaung, 17: Ngapyinin, 18: Lamaing, 19: Nattaung, 20: Gokteik, and 21: Se’en (for additional information see Supplementary Table S1). Underlined sites refer to type localities of examined holotypes (16: Presbytis melamera, 21: Pithecus shanicus).
Figure 2. Mitogenomic tree showing phylogenetic relationships and divergence times among mitochondrial lineages of Trachypithecus (A) and detailed view on T. phayrei (B)
Node bars indicate 95% highest posterior densities (HPDs). Node supports of <100% ML BS and <1.0 BI PP are given at respective nodes. In A, species group assignment is given on the right; *: T. crepusculus, a member of the T. obscurus group according to phenotype and nuclear sequence data. In B, sample labels contain individual ID and sample location number (as in Figures 1, 5, Supplementary Table S1). Clade assignment is given on the right. Complete ultrametric tree including all non-Trachypithecus taxa and details on estimated divergence times are provided in Supplementary Figure S1 and Table S4, respectively.
Figure 5. Geographical distribution of mitochondrial clades found in Trachypithecus phayrei
Sample locations are numbered as in Figures 1, 2 (see also Supplementary Table S1) and colored according to their mitochondrial clade assignment. Limits of the Central clade to the northeast and East clade to the southwest, depicted in light green, are not yet firmly resolved. Samples from locations 6–9 form Central clade A, while those from locations 10–12 cluster in Central clade B. Note, at location 10, haplotypes of the Central and East clades were found. Museum specimen from location 13 cluster unexpectedly with Central clade A (see Results).
Figure 3. Head-body length (A), tail length (B), and tail/head-body length ratio (C) of adult male and female Trachypithecus phayrei representing West, Central, and East clades (median, quartiles, min-max)
Numbers in brackets: sample sizes; post-hoc pair-wise population comparisons of traits; Mann-Whitney U-test, with Bonferroni correction for multiple testing: *: P<0.025, (*): P<0.05; see Supplementary Table S6.
Figure 4. Morphometric comparisons (principal component analysis performed on 12 molar measurements) among Trachypithecus phayrei individuals representing West (red), Central (blue), and East (yellow) clades
Shown is projection of specimen scores of first and second principal components, with variance explained by each component (graphical depictions of third principal component appear in Supplementary Figure S2 and underlying statistics are provided in Supplementary Table S7.)
Figure 6. Photos of Trachypithecus phayrei (A, B), Trachypithecus popa sp. nov. (C, D) and Trachypithecus melamera (formerly T. p. shanicus) (E, F)
A: Adult female T. phayrei at Yangon Zoo, Myanmar (photo by Tilo Nadler); B: Adult male T. phayrei from Lawachara National Park, Bangladesh (photo by Tanvir Ahmed); C, D: Subadult male T. popa from Mount Popa, Myanmar (photo by Lay Win); E: Adult female T. melamera at Mandalay Zoo, Myanmar (photo by Tilo Nadler), F: Adult female T. melamera with offspring from Gaoligong Mountains National Park, China (photo by Chi Ma).
-
[1] Anandam MV, Bennett EL, Davenport TRB, Davies NJ, Detwiler KM, Engelhardt A, et al. 2013. Family Cercopithecidae (Old World monkeys) – Species accounts of Cercopithecidae. In: Mittermeier RA, Rylands AB, Wilson DE. Handbook of the Mammals of the World. Volume 3: Primates. Barcelona: Lynx Edicions, 628–753. [2] Anderson J. 1878. Anatomical and Zoological Researches: Comprising an Account of the Zoological Results of the Two Expeditions to Western Yunnan in 1868 and 1875, and a Monograph of the Two Cetacean Genera, Platanista and Orcella. Volume 1. London: B. Quaritch. [3] Avise JC. 2000. Phylogeography: The History and Formation of Species. Cambridge, MA: Harvard University Press. [4] Bleisch B, Brockelman W, Timmins RJ, Nadler T, Thun S, Das J, et al. 2008a [2020-11-03]. Trachypithecus phayrei ssp. phayrei. The IUCN red list of threatened species 2008: e.T136928A4350467. https://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T136928A4350467.en. [5] Bleisch B, Brockelman W, Timmins RJ, Nadler T, Thun S, Das J, et al. 2008b [2020-11-03]. Trachypithecus phayrei ssp. shanicus. The IUCN red list of threatened species 2008: e.T39863A10277688. https://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T39863A10277688.en. [6] Bleisch B, Brockelman W, Timmins RJ, Nadler T, Thun S, Das J, et al. 2020 [2020-07-22]. Trachypithecus phayrei. The IUCN red list of threatened species 2020: e.T22040A17960739. https://dx.doi.org/10.2305/IUCN.UK.2020-2.RLTS.T22040A17960739.en. [7] Blyth E. 1847. Supplementary report of the curator of the Zoological Department. Journal of the Asiatic Society of Bengal, 16(2): 728−732. [8] Blyth E. 1863. Catalogue of the Mammalia in the Museum Asiatic Society. Calcutta: Savielle and Cranenburgh. [9] Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D, et al. 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 10(4): e1003537. doi: 10.1371/journal.pcbi.1003537 [10] Brandon-Jones D. 1984. Colobus and leaf monkeys. In: MacDonald D. The Encyclopedia of Mammals. London: George Allen and Unwin, 398–410. [11] Brandon-Jones D. 1995. A revision of the Asian pied leaf monkeys (Mammalia: Cercopithecidae: superspecies Semnopithecus auratus), with a description of a new subspecies. The Raffles Bulletin of Zoology, 43(1): 3−43. [12] Brandon-Jones D. 1996. The Asian Colobinae (Mammalia: Cercopithecidae) as indicators of Quaternary climatic change. Biological Journal of the Linnean Society, 59(3): 327−350. doi: 10.1006/bijl.1996.0068 [13] Brandon-Jones D, Eudey AA, Geissmann T, Groves CP, Melnick DJ, Morales JC, et al. 2004. Asian primate classification. International Journal of Primatology, 25(1): 97−164. doi: 10.1023/B:IJOP.0000014647.18720.32 [14] Burton FD, Snarr KA, Harrison SE. 1995. Preliminary report on Presbytis francoisi leucocephalus. International Journal of Primatology, 16(2): 311−327. doi: 10.1007/BF02735484 [15] Chernomor O, von Haeseler A, Minh BQ. 2016. Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology, 65(6): 997−1008. doi: 10.1093/sysbio/syw037 [16] Chetry D, Chetry R, Ghosh K, Bhattacharjee PC. 2010a. Status and conservation of Golden langur in Chakrashila Wildlife Sanctuary, Assam, India. Primate Conservation, 25: 81−86. doi: 10.1896/052.025.0112 [17] Chetry D, Chetry R, Ghosh K, Singh AK. 2010b. Status and distribution of the Eastern Hoolock Gibbon (Hoolock leuconedys) in Mehao Wildlife Sanctuary, Arunachal Pradesh, India. Primate Conservation, 25: 87−94. doi: 10.1896/052.025.0113 [18] Cracraft J. 1983. Species concepts and speciation analysis. In: Johnston RF. Current Ornithology. New York: Plenum Press, 159–187. [19] Dabney J, Knapp M, Glocke I, Gansauge MT, Weihmann A, Nickel B, et al. 2013. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proceedings of the National Academy of Sciences of the United States of America, 110(39): 15758−15763. doi: 10.1073/pnas.1314445110 [20] Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. 2006. Relaxed phylogenetics and dating with confidence. PLoS Biology, 4(5): e88. doi: 10.1371/journal.pbio.0040088 [21] Edgar RC. 2010. Quality measures for protein alignment benchmarks. Nucleic Acids Research, 38(7): 2145−2153. doi: 10.1093/nar/gkp1196 [22] Elliot DG. 1909. Descriptions of apparently new species and subspecies of monkeys of the genera Callicebus, Lagothrix, Papio, Pithecus, Cercopithecus, Erythrocebus, and Presbytis. Annals and Magazine of Natural History, 4(21): 244−274. doi: 10.1080/00222930908692668 [23] Fan PF, He K, Chen X, Ortiz A, Zhang B, Zhao C, et al. 2017. Description of a new species of Hoolock gibbon (Primates: Hylobatidae) based on integrative taxonomy. American Journal of Primatology, 79(5): e22631. doi: 10.1002/ajp.22631 [24] Geissmann T, Groves CP, Roos C. 2004. The Tenasserim lutung, Trachypithecus barbei (Blyth, 1847) (Primates: Cercopithecidae): description of a live specimen, and a reassessment of phylogenetic affinities, taxonomic history, and distribution. Contributions to Zoology, 73(4): 271−282. doi: 10.1163/18759866-07304003 [25] Gelman A, Rubin DB. 1992. Inference from iterative simulation using multiple sequences. Statistical Science, 7(4): 457−472. doi: 10.1214/ss/1177011136 [26] Gouy M, Guindon S, Gascuel O. 2010. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution, 27(2): 221−224. doi: 10.1093/molbev/msp259 [27] Groves CP. 2001. Primate Taxonomy. Washington DC: Smithsonian Institution Press. [28] Hallet B, Molnar P. 2001. Distorted drainage basins as markers of crustal strain east of the Himalaya. Journal of Geophysical Research: Solid Earth, 106(B7): 13697−13709. doi: 10.1029/2000JB900335 [29] He K, Hu NQ, Orkin JD, Nyein DT, Ma C, Xiao W, et al. 2012. Molecular phylogeny and divergence time of Trachypithecus: with implications for the taxonomy of T. phayrei. Zoological Research, 33(E5–6): E104−E110. [30] Heaney LR. 1986. Biogeography of mammals in SE Asia: estimates of rates of colonization, extinction and speciation. Biological Journal of the Linnean Society, 28(1–2): 127−165. [31] IUCN (International Union for Conservation of Nature). 2001. IUCN Red List Categories and Criteria: Version 3.1. 2nd ed. Gland and Cambridge: IUCN. [32] Jiang HS, Feng M, Wang J, Wu MC, Lai YM, Liu ZM. 1991. The distribution and ecological habit of white-headed langur (Presbytis leucocephalus). Acta Theriologica Sinica, 11(3): 236−237, 193. (in Chinese [33] Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14(6): 587−589. doi: 10.1038/nmeth.4285 [34] Karanth KP. 2008. Primate numts and reticulate evolution of capped and golden leaf monkeys (Primates: Colobinae). Journal of Biosciences, 33(5): 761−770. doi: 10.1007/s12038-008-0096-6 [35] Karanth KP. 2010. Molecular systematics and conservation of the langurs and leaf monkeys of South Asia. Journal of Genetics, 89(4): 393−399. doi: 10.1007/s12041-010-0057-3 [36] Karanth KP, Singh L, Collura RV, Stewart CB. 2008. Molecular phylogeny and biogeography of langurs and leaf monkeys of South Asia (Primates: Colobinae). Molecular Phylogenetics and Evolution, 46(2): 683−694. doi: 10.1016/j.ympev.2007.11.026 [37] Khajuria H. 1956. A new langur (Primates: Colobidae) from Goalpara District, Assam. Annals and Magazine of Natural History, 9(98): 86−88. doi: 10.1080/00222935608655728 [38] Larsson A. 2014. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics, 30(22): 3276−3278. doi: 10.1093/bioinformatics/btu531 [39] Liedigk R, Thinh VN, Nadler T, Walter L, Roos C. 2009. Evolutionary history and phylogenetic position of the Indochinese grey langur (Trachypithecus crepusculus). Vietnamese Journal of Primatology, 1(3): 1−8. [40] Liedigk R, Kolleck J, Böker KO, Meijaard E, Md-Zain BM, Abdul-Latiff MAB, et al. 2015. Mitogenomic phylogeny of the common long-tailed macaque (Macaca fascicularis fascicularis). BMC Genomics, 16(1): 222. doi: 10.1186/s12864-015-1437-0 [41] Liedigk R, Yang MY, Jablonski NG, Momberg F, Geissmann T, Lwin N, et al. 2012. Evolutionary history of the odd-nosed monkeys and the phylogenetic position of the newly described Myanmar snub-nosed monkey Rhinopithecus strykeri. PLoS One, 7(5): e37418. doi: 10.1371/journal.pone.0037418 [42] Liu ZJ, Wang BS, Nadler T, Liu GJ, Sun T, Huang CM, et al. 2013. Relatively recent evolution of pelage coloration in Colobinae: phylogeny and phylogeography of three closely related langur species. PLoS One, 8(4): e61659. doi: 10.1371/journal.pone.0061659 [43] Liu ZJ, Zhang LY, Yan ZZ, Ren ZJ, Han FM, Tan XX, et al. 2020. Genomic mechanisms of physiological and morphological adaptations of limestone langurs to karst habitats. Molecular Biology and Evolution, 37(4): 952−968. doi: 10.1093/molbev/msz301 [44] Miller KG, Kominz MA, Browning JV, Wright JD, Mountain GS, Katz ME, et al. 2005. The Phanerozoic record of global sea-level change. Science, 310(5752): 1293−1298. doi: 10.1126/science.1116412 [45] Minh BQ, Nguyen MAT, von Haeseler A. 2013. Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution, 30(5): 1188−1195. doi: 10.1093/molbev/mst024 [46] Mittermeier RA, Rylands AB, Wilson DE. 2013. Handbook of the Mammals of the World. Volume 3: Primates. Barcelona: Lynx Edicions. [47] Murray NJ, Keith DA, Tizard R, Duncan A, Htut WT, Hlaing N, et al. 2020. Threatened Ecosystems of Myanmar. An IUCN Red List of Ecosystems Assessment. Version 1.0. Yangon: Wildlife Conservation Society. [48] Nadler T, Momberg F, Dang NX, Lormee N. 2003. Vietnam Primate Conservation Status Review 2002. Part 2: Leaf Monkeys. Hanoi: Fauna & Flora International – Vietnam Program and Frankfurt Zoological Society. [49] Nadler T, Walter L, Roos C. 2005. Molecular evolution, systematics and distribution of the taxa within the silvered langur species group (Trachypithecus [cristatus]) in Southeast Asia. Zoologischer Garten (NF), 75(4): 238−247. [50] Napier JR, Napier PH. 1967. A Handbook of Living Primates. London: Academic Press. [51] Napier JR, Napier PH. 1994. The Natural History of the Primates. London: MIT Press. [52] Napier PH. 1985. Catalogue of Primates in the British Museum (Natural History) and Elsewhere in the British Isles. Part III: Family Cercopithecidae, Subfamily Colobinae. London: British Museum (Natural History). [53] Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1): 268−274. doi: 10.1093/molbev/msu300 [54] Oates JF, Davies AG, Delson E. 1994. The diversity of living colobines. In: Davies AG, Oates JF. Colobine Monkeys: Their Ecology, Behaviour and Evolution. Cambridge: Cambridge University Press, 45–73. [55] Osterholz M, Walter L, Roos C. 2008. Phylogenetic position of the langur genera Semnopithecus and Trachypithecus among Asian colobines, and genus affiliations of their species groups. BMC Evolutionary Biology, 8: 58. doi: 10.1186/1471-2148-8-58 [56] Perelman P, Johnson WE, Roos C, Seuánez HN, Horvath JE, Moreira MAM, et al. 2011. A molecular phylogeny of living primates. PLoS Genetics, 7(3): e1001342. doi: 10.1371/journal.pgen.1001342 [57] Pocock RI. 1928. The langurs, or leaf monkeys, of British India. Part II. The Journal of the Bombay Natural History Society, 32(3-4): 660−677. [58] Pocock RI. 1939. The Fauna of British India, Including Ceylon and Burma. Mammalia, Volume 1. London: Taylor and Francis. [59] Quyet LK, Lin AK, Oo KN, Naing KK. 2019. Survey of Shan States Langur (Trachypithecus Phayrei ssp. Shanicus) in Panlaung-Pyadalin Cave Wildlife Sanctuary and Myogyi Monastery, Shan State, Myanmar. Yangon: Fauna & Flora International – Myanmar Programme. [60] Ram MS, Kittur SM, Biswas J, Nag S, Shil J, Umapathy G. 2016. Genetic diversity and structure among isolated populations of the endangered Gees Golden Langur in Assam, India. PLoS One, 11(8): e0161866. doi: 10.1371/journal.pone.0161866 [61] Rohland N, Siedel H, Hofreiter M. 2004. Nondestructive DNA extraction method for mitochondrial DNA analyses of museum specimens. BioTechniques, 36(5): 814−821. doi: 10.2144/04365ST05 [62] Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3): 539−542. doi: 10.1093/sysbio/sys029 [63] Roos C. 2021. Taxonomic classification of colobine monkeys. In: Matsuda I, Grueter CC, Teichroeb JA. The Colobines: Natural History, Behaviour and Ecological Diversity. Berlin: Springer. [64] Roos C, Boonratana R, Supriatna J, Fellowes JR, Groves CP, Nash SD, et al. 2014. An updated taxonomy and conservation status review of Asian primates. Asian Primates Journal, 4(1): 2−38. [65] Roos C, Kothe M, Alba DM, Delson E, Zinner D. 2019b. The radiation of macaques out of Africa: Evidence from mitogenome divergence times and the fossil record. Journal of Human Evolution, 133: 114−132. doi: 10.1016/j.jhevol.2019.05.017 [66] Roos C, Liedigk R, Thinh VN, Nadler T, Zinner D. 2019a. The hybrid origin of the Indochinese gray langur Trachypithecus crepusculus. International Journal of Primatology, 40(1): 9−27. doi: 10.1007/s10764-017-0008-4 [67] Roos C, Nadler T, Walter L. 2008. Mitochondrial phylogeny, taxonomy and biogeography of the silvered langur species group (Trachypithecus cristatus). Molecular Phylogenetics and Evolution, 47(2): 629−636. doi: 10.1016/j.ympev.2008.03.006 [68] Roos C, Thanh VN, Walter L, Nadler T. 2007. Molecular systematics of Indochinese primates. Vietnamese Journal of Primatology, 1(1): 41−53. [69] Roos C, Zinner D. 2021. Molecular phylogeny and phylogeography of colobines. In: Matsuda I, Grueter CC, Teichroeb JA. The Colobines: Natural History, Behaviour and Ecological Diversity. Berlin: Springer. [70] Roos C, Zinner D, Kubatko LS, Schwarz C, Yang MY, Meyer D, et al. 2011. Nuclear versus mitochondrial DNA: evidence for hybridization in colobine monkeys. BMC Evolutionary Biology, 11(1): 77. doi: 10.1186/1471-2148-11-77 [71] Rowe N, Myers M. 2016. All the World's Primates. New York: Pogonias Press. [72] RStudio Team. 2020 [2020-05-18]. RStudio: integrated development for https://www.amazon.de/All-Worlds-Primates-Noel-Rowe/dp/1940496063R. http://www.rstudio.com/. [73] Thant NML. 2013. Molecular Phylogenetic Status and Ecological Characteristics of Phayre’s Leaf Monkey (Trachypithecus phayrei) in Myanmar. Ph.D. Dissertation, Seoul National University. [74] Thant NML, Kim BJ, Ko HS, Yi KM, Lee WS. 2013. Molecular phylogenetic analysis of non-invasive samples for the endangered Phayre’s leaf monkey (Trachypithecus phayrei) in Popa Mountain Park, Central Myanmar. Journal of Animal and Veterinary Advances, 12(5): 626−632. [75] Thinh VN, Mootnick AR, Geissmann T, Li M, Ziegler T, Agil M, et al. 2010a. Mitochondrial evidence for multiple radiations in the evolutionary history of small apes. BMC Evolutionary Biology, 10(1): 74. doi: 10.1186/1471-2148-10-74 [76] Thinh VN, Rawson B, Hallam C, Kenyon M, Nadler T, Walter L, et al. 2010b. Phylogeny and distribution of crested gibbons (genus Nomascus) based on mitochondrial cytochrome b gene sequence data. American Journal of Primatology, 72(12): 1047−1054. doi: 10.1002/ajp.20861 [77] Wang BS, Zhou XM, Shi FL, Liu ZJ, Roos C, Garber PA, et al. 2015. Full-length Numt analysis provides evidence for hybridization between the Asian colobine genera Trachypithecus and Semnopithecus. American Journal of Primatology, 77(8): 901−910. doi: 10.1002/ajp.22419 [78] Wang XP, Yu L, Roos C, Ting N, Chen CP, Wang J, et al. 2012. Phylogenetic relationships among the colobine monkeys revisited: new insights from analyses of complete mt genomes and 44 nuclear non-coding markers. PLoS One, 7(4): e36274. doi: 10.1371/journal.pone.0036274 [79] Wangchuk T, Inouye DW, Hare MP. 2008. The emergence of an endangered species: evolution and phylogeny of the Trachypithecus geei of Bhutan. International Journal of Primatology, 29(3): 565−582. doi: 10.1007/s10764-008-9258-5 [80] Weitzel V, Groves CP. 1985. The nomenclature and taxonomy of the colobine monkeys of Java. International Journal of Primatology, 6(4): 399−409. doi: 10.1007/BF02736386 [81] Wroughton RC. 1917. A new “leaf monkey” from the Shan States. The Journal of the Bombay Natural History Society, 25(1): 46−48. [82] Wroughton RC. 1918. The Shan states langur – a correction. The Journal of the Bombay Natural History Society, 25(3): 361. [83] Wroughton RC. 1921. Bombay Natural History Society’s mammal survey of India, Burma and Ceylon, Report No.35. The Journal of the Bombay Natural History Society, 27(1): 553−554. [84] Zhang YP, Ryder OA. 1998. Mitochondrial cytochrome b gene sequences of Old World monkeys: with special reference on evolution of Asian colobines. Primates, 39(1): 39−49. doi: 10.1007/BF02557742 [85] Zinner D, Fickenscher GH, Roos C. 2013. Family Cercopithecidae (Old World monkeys). In: Mittermeier RA, Rylands AB, Wilson DE. Handbook of the Mammals of the World. Volume 3: Primates. Barcelona: Lynx Edicions, 550–627. -
ZR-2020-254 Supplementary Tables and Figures.rar
-