留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnetic brain stimulation using iron oxide nanoparticle-mediated selective treatment of the left prelimbic cortex as a novel strategy to rapidly improve depressive-like symptoms in mice

Qing-Bo Lu Jian-Fei Sun Qu-Yang Yang Wen-Wen Cai Meng-Qin Xia Fang-Fang Wu Ning Gu Zhi-Jun Zhang

Qing-Bo Lu, Jian-Fei Sun, Qu-Yang Yang, Wen-Wen Cai, Meng-Qin Xia, Fang-Fang Wu, Ning Gu, Zhi-Jun Zhang. Magnetic brain stimulation using iron oxide nanoparticle-mediated selective treatment of the left prelimbic cortex as a novel strategy to rapidly improve depressive-like symptoms in mice. Zoological Research, 2020, 41(4): 381-394. doi: 10.24272/j.issn.2095-8137.2020.076
Citation: Qing-Bo Lu, Jian-Fei Sun, Qu-Yang Yang, Wen-Wen Cai, Meng-Qin Xia, Fang-Fang Wu, Ning Gu, Zhi-Jun Zhang. Magnetic brain stimulation using iron oxide nanoparticle-mediated selective treatment of the left prelimbic cortex as a novel strategy to rapidly improve depressive-like symptoms in mice. Zoological Research, 2020, 41(4): 381-394. doi: 10.24272/j.issn.2095-8137.2020.076

磁性纳米氧化铁药物介导的脑磁刺激新策略可快速改善小鼠抑郁样行为

doi: 10.24272/j.issn.2095-8137.2020.076

Magnetic brain stimulation using iron oxide nanoparticle-mediated selective treatment of the left prelimbic cortex as a novel strategy to rapidly improve depressive-like symptoms in mice

Funds: This work was supported by grants from National Natural Science Foundation of China (81830040 to Z.J.Z.), National Key Projects for Research and Development Program of China (2016YFC1306700 to Z.J.Z., 2017YFA0104302 to N.G., and 2017YFA0104301 to J.F.S.), and Program of Excellent Talents in Medical Science of Jiangsu Province (JCRCA2016006 to Z.J.Z.)
More Information
  • 摘要:

    磁刺激极大地促进了神经科学的进步,其中高频(10 Hz)重复经颅磁刺激(rTMS)刺激左背外侧前额叶皮层(DLPFC)已于2008年获得美国食品药品监督管理局(FDA)的批准,用于治疗成人难治性抑郁。但目前rTMS仍然存在技术局限性,包括穿透力差,磁刺激聚焦精度不足,刺激深度有限等。特别是在小动物精神疾病模型中,即使最小的通用线圈也会刺激整个半球甚至整个大脑,无法做到精准定位,难以研究rTMS的神经调控机制等脑科学相关的重大科学问题。针对此问题,我们提出了利用获得中国FDA批准的超顺磁性纳米氧化铁(SPIO)药物,结合轻度磁脉冲序列,以提高局部皮层敏感性的磁性脑刺激的新策略,即联合磁性刺激系统(c-MSS)。小鼠左前额叶皮层中与人类DLPFC同源的脑区为PrL,磁共振成像证明SPIO可稳定存在于PrL脑区至少11天。从细胞、动物和体外模型多方面证明了c-MSS的安全性和物理性特征。建立慢性不可预测的轻度应激(CUMS)抑郁模型小鼠,使用0.1T c-MSS(每次5分钟,每天两次)进行磁干预,结果表明10 Hz磁刺激5天可快速改善CUMS小鼠的抑郁样症状,这可能与增加脑源性神经营养因子(BDNF)和改善下丘脑-垂体-肾上腺(HPA)轴有密切关系。c-MSS是一种可精准刺激小动物任意皮层靶标的新方法,这一项研究成果将极大地丰富磁刺激的潜在应用领域,促进基于磁性纳米药物的磁刺激技术临床转化。

    #Authors contributed equally to this work
  • Figure  1.  Construction of combined magnetic stimulation system (c-MSS) and microinjection of mice

    A: TEM image of PSC-capped γ-Fe2O3 nanoparticles and external view of injection (Inset). B: Schematic of injection process in left PrL cortex of mice. C: Measurement of PSC-capped γ-Fe2O3 nanoparticle size using Dynamic Light Scattering. Mean diameter was approximately 30-35 nm. D: Schematic of imposed magnetic field. E: Simulation of field intensity and magnetic flux of cone-shaped magnets. F: Magnetic hysteresis of SPIO nanoparticles. G: Output wave-profile of magnetic field. c-MSS: Combined magnetic stimulation system; TEM: Transmission electronic microscopy; PSC: Polyglucose sorbitol carboxymethylether; PrL: Prelimbic; SPIO: Superparamagnetic iron oxide.

    Figure  2.  MRI tracing and cytotoxicity of nanodrugs

    A–D: in vivo MRI images of injected nanodrugs in left PrL cortex of mice after 1, 3, 7, and 11 days, respectively. n=3 in each group. E, F: CCK-8 and LDH assay of primary cortical neurons after treatment for 24 h with various doses of SPIO nanoparticles. G, H: CCK-8 and LDH assay of primary cortical neurons treated with 5 μg/mL SPIO nanoparticles for 6, 12, 24, and 48 h (n=8). I: Representative images of in situ TUNEL assay using confocal microscopy (magnification,×400). J: Percentage of TUNEL-positive cells. Scale bar: 50 μm. n=8 slices from eight mice in each group. **: P<0.01 compared with control group (one-way ANOVA followed by Bonferroni’s multiple comparison post hoc test). MRI: Magnetic resonance imaging; PrL: Prelimbic; CCK-8: Cell counting kit-8; LDH: Lactate dehydrogenase; SPIO: Superparamagnetic iron oxide; TUNEL: Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling.

    Figure  3.  Measurement of magneto-electric induction and physical effects in a hydrogel phantom

    A: Hydrogel phantom containing injected SPIO nanoparticles. B: Heating of phantom within a 10 Hz (300 r/min) magnetic field. C: Magneto-electric induction in different field frequencies. D: Schematic of measurement of magneto-electric induction. E: Acoustic signals of phantoms with SPIO nanoparticles in presence of a 5, 10, and 15 Hz magnetic field. F: Induced voltages in presence or absence of SPIO nanoparticles. Result was confirmed in triplicate. SPIO: Superparamagnetic iron oxide.

    Figure  4.  Simulation using COMSOL software of magnetization, induction of electric field, induction of electric current, and induction of stress field for SPIO nanoparticles in presence of a 10 Hz magnetic field

    Left column represents magnetic spheres; right column represents non-magnetic spheres.

    Figure  5.  Treatment of CUMS mice and confirmation of effects of c-MSS through behavioral experiments

    A: Experimental procedures for selection of optimal field frequency and duration of treatment. B, C: SPT and FST results in CUMS mice. n=15 mice for each group. Values are mean±SEM. ***: P<0.001 vs. before CUMS modelling (control mice) (paired Student’s t-test). D: Monitoring of body weight of mice compared with age-matched control mice. n=15 mice for each group. Values are mean±SEM. *: P<0.05 vs. Control; **: P<0.01 vs. Control; ***: P<0.001 vs. Control. E, F: SPT and FST results in CUMS mice after c-MSS treatment using different frequencies of magnetic field. G, H: SPT and FST results in CUMS mice after treatment with a 10 Hz c-MSS for a variety of durations. Values are mean±SEM, n=8-10 mice. *: P<0.05 vs. Control; **: P<0.01 vs. Control; ***: P<0.001 vs. Control. #: P<0.05 vs. CUMS; ##: P<0.01 vs. CUMS; ###: P<0.001 vs. CUMS (one-way ANOVA followed by Bonferroni’s multiple comparison post hoc test). I,J: SPT and FST results. Sham groups were administered saline and 10 Hz magnetic field, SPIO nanoparticles without a magnetic field, and Au nanoparticles in a 10 Hz magnetic field. All treatments lasted 5 days (two 5 min sessions per day). Data were calculated from six mice for each group. Values are mean±SEM. ***: P<0.001 vs. Control. ###: P<0.001 vs. CUMS (one-way ANOVA followed by Bonferroni’s multiple comparison post hoc test). c-MSS: Combined magnetic stimulation system; FST: Forced swim test; SPT: Sucrose preference test; CUMS: Chronic unpredictable mild stress; SPIO: Superparamagnetic iron oxide; PrL: Prelimbic.

    Figure  6.  Comparison of biomarker levels for effective anti-depression in mice

    A: Representative immunohistochemistry micrographs of c-fos expression in left PrL cortex after c-MSS treatment for 5 days in mice. B: Schematic displaying region of left PrL cortex. C: c-fos-positive cells in left PrL cortex. Scale bar: 50 μm. n=8 slices from eight mice in each group. Values represent mean±SEM. ***: P<0.001 vs. Control (one-way ANOVA followed by Bonferroni’s multiple comparison post hoc test). D: BDNF protein levels in PrL whole tissue in various groups. E: Serum levels of CORT in various groups. F: Serum levels of ACTH in various groups. Data were calculated from eight mice for each group. Values are mean±SEM. **: P<0.01 vs. Control; ***: P<0.001 vs. Control. #: P<0.05 vs. CUMS+Saline+10 Hz MF; ###: P<0.001 vs. CUMS+Saline+10 Hz MF (one-way ANOVA followed by Bonferroni’s multiple comparison post hoc test). PrL: Prelimbic; CUMS: Chronic unpredictable mild stress; BDNF: Brain-derived neurotrophic factor; CORT: Corticosterone; ACTH: Adrenocorticotropic hormone.

  • [1] Berlim MT, van den Eynde F, Jeff Daskalakis Z. 2013. Clinically meaningful efficacy and acceptability of low-frequency repetitive transcranial magnetic stimulation (rTMS) for treating primary major depression: a meta-analysis of randomized, double-blind and sham-controlled trials. Neuropsychopharmacology, 38(4): 543−551. doi: 10.1038/npp.2012.237
    [2] Berlim MT, van den Eynde F, Tovar-Perdomo S, Daskalakis ZJ. 2014. Response, remission and drop-out rates following high-frequency repetitive transcranial magnetic stimulation (rTMS) for treating major depression: a systematic review and meta-analysis of randomized, double-blind and sham-controlled trials. Psychological Medicine, 44(2): 225−239. doi: 10.1017/S0033291713000512
    [3] Bestmann S. 2008. The physiological basis of transcranial magnetic stimulation. Trends in Cognitive Sciences, 12(3): 81−83. doi: 10.1016/j.tics.2007.12.002
    [4] Chen R, Romero G, Christiansen MG, Mohr A, Anikeeva P. 2015. Wireless magnetothermal deep brain stimulation. Science, 347(6229): 1477−1480. doi: 10.1126/science.1261821
    [5] Diana M, Raij T, Melis M, Nummenmaa A, Leggio L, Bonci A. 2017. Rehabilitating the addicted brain with transcranial magnetic stimulation. Nature Reviews Neuroscience, 18(11): 685−693. doi: 10.1038/nrn.2017.113
    [6] Fang GX, Wang Y. 2018. Effects of rTMS on hippocampal endocannabinoids and depressive-like behaviors in adolescent rats. Neurochemical Research, 43(9): 1756−1765. doi: 10.1007/s11064-018-2591-y
    [7] GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. 2017. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet, 390(10100): 1211−1259. doi: 10.1016/S0140-6736(17)32154-2
    [8] George MS, Nahas Z, Molloy M, Speer AM, Oliver NC, Li XB, Arana GW, Risch SC, Ballenger JC. 2000. A controlled trial of daily left prefrontal cortex TMS for treating depression. Biological Psychiatry, 48(10): 962−970. doi: 10.1016/S0006-3223(00)01048-9
    [9] George MS, Post RM. 2011. Daily left prefrontal repetitive transcranial magnetic stimulation for acute treatment of medication-resistant depression. The American Journal of Psychiatry, 168(4): 356−364. doi: 10.1176/appi.ajp.2010.10060864
    [10] Ghosal S, Bang E, Yue WZ, Hare BD, Lepack AE, Girgenti MJ, Duman RS. 2018. Activity-dependent brain-derived neurotrophic factor release is required for the rapid antidepressant actions of scopolamine. Biological Psychiatry, 83(1): 29−37. doi: 10.1016/j.biopsych.2017.06.017
    [11] Guadagnin V, Parazzini M, Fiocchi S, Liorni I, Ravazzani P. 2016. Deep transcranial magnetic stimulation: modeling of different coil configurations. IEEE Transactions on Biomedical Engineering, 63(7): 1543−1550. doi: 10.1109/TBME.2015.2498646
    [12] Guduru R, Liang P, Hong J, Rodzinski A, Hadjikhani A, Horstmyer J, Levister E, Khizroev S. 2015. Magnetoelectric 'spin' on stimulating the brain. Nanomedicine, 10(13): 2051−2061. doi: 10.2217/nnm.15.52
    [13] Hadley D, Anderson BS, Borckardt JJ, Arana A, Li XB, Nahas Z, George MS. 2011. Safety, tolerability, and effectiveness of high doses of adjunctive daily left prefrontal repetitive transcranial magnetic stimulation for treatment-resistant depression in a clinical setting. The Journal of ECT, 27(1): 18−25. doi: 10.1097/YCT.0b013e3181ce1a8c
    [14] Hauer L, Sellner J, Brigo F, Trinka E, Sebastianelli L, Saltuari L, Versace V, Höller Y, Nardone R. 2019. Effects of repetitive transcranial magnetic stimulation over prefrontal cortex on attention in psychiatric disorders: a systematic review. Journal of Clinical Medicine, 8(4): 416. doi: 10.3390/jcm8040416
    [15] Herrera DG, Robertson HA. 1996. Activation of c-fos in the brain. Progress in Neurobiology, 50(2-3): 83−107. doi: 10.1016/S0301-0082(96)00021-4
    [16] Hesselberg ML, Wegener G, Buchholtz PE. 2016. Antidepressant efficacy of high and low frequency transcranial magnetic stimulation in the FSL/FRL genetic rat model of depression. Behavioural Brain Research, 314: 45−51. doi: 10.1016/j.bbr.2016.07.037
    [17] Huang H, Delikanli S, Zeng H, Ferkey DM, Pralle A. 2010. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nature Nanotechnology, 5(8): 602−606. doi: 10.1038/nnano.2010.125
    [18] Karege F, Bondolfi G, Gervasoni N, Schwald M, Aubry JM, Bertschy G. 2005. Low brain-derived neurotrophic factor (BDNF) levels in serum of depressed patients probably results from lowered platelet BDNF release unrelated to platelet reactivity. Biological Psychiatry, 57(9): 1068−1072. doi: 10.1016/j.biopsych.2005.01.008
    [19] Li K, Nejadnik H, Daldrup-Link HE. 2017. Next-generation superparamagnetic iron oxide nanoparticles for cancer theranostics. Drug Discovery Today, 22(9): 1421−1429. doi: 10.1016/j.drudis.2017.04.008
    [20] Li RR, Wang J, Yu XY, Xu PF, Zhang S, Xu JH, Bai YJ, Dai ZZ, Sun YX, Ye RD, Liu XF, Ruan G, Xu GL. 2019. Enhancing the effects of transcranial magnetic stimulation with intravenously injected magnetic nanoparticles. Biomaterials Science, 7(6): 2297−2307. doi: 10.1039/C9BM00178F
    [21] Loo CK, McFarquhar TF, Mitchell PB. 2008. A review of the safety of repetitive transcranial magnetic stimulation as a clinical treatment for depression. International Journal of Neuropsychopharmacology, 11(1): 131−147. doi: 10.1017/S1461145707007717
    [22] Luborzewski A, Schubert F, Seifert F, Danker-Hopfe H, Brakemeier EL, Schlattmann P, Anghelescu I, Colla M, Bajbouj M. 2007. Metabolic alterations in the dorsolateral prefrontal cortex after treatment with high-frequency repetitive transcranial magnetic stimulation in patients with unipolar major depression. Journal of Psychiatric Research, 41(7): 606−615. doi: 10.1016/j.jpsychires.2006.02.003
    [23] McGirr A, Karmani S, Arsappa R, Berlim MT, Thirthalli J, Muralidharan K, Yatham LN. 2016. Clinical efficacy and safety of repetitive transcranial magnetic stimulation in acute bipolar depression. World Psychiatry, 15(1): 85−86. doi: 10.1002/wps.20300
    [24] Meng QL, Cherry M, Refai A, Du XM, Lu HB, Hong E, Yang YH, Choa FS. 2018. Development of focused transcranial magnetic stimulation for rodents by copper-array shields. IEEE Transactions on Magnetics, 54(5): 9300504.
    [25] Molendijk ML, Spinhoven P, Polak M, Bus BAA, Penninx BWJH, Elzinga BM. 2014. Serum BDNF concentrations as peripheral manifestations of depression: evidence from a systematic review and meta-analyses on 179 associations (N=9484). Molecular Psychiatry, 19(7): 791−800. doi: 10.1038/mp.2013.105
    [26] Müller MB, Holsboer F. 2006. Mice with mutations in the HPA-system as models for symptoms of depression. Biological Psychiatry, 59(12): 1104−1115. doi: 10.1016/j.biopsych.2006.02.008
    [27] Oh H, Piantadosi SC, Rocco BR, Lewis DA, Watkins SC, Sibille E. 2019. The role of dendritic brain-derived neurotrophic factor transcripts on altered inhibitory circuitry in depression. Biological Psychiatry, 85(6): 517−526. doi: 10.1016/j.biopsych.2018.09.026
    [28] Otte C, Gold SM, Penninx BW, Pariante CM, Etkin A, Fava M, Mohr DC, Schatzberg AF. 2016. Major depressive disorder. Nature Reviews Disease Primers, 2: 16065. doi: 10.1038/nrdp.2016.65
    [29] Pariante CM, Lightman SL. 2008. The HPA axis in major depression: classical theories and new developments. Trends in Neurosciences, 31(9): 464−468. doi: 10.1016/j.tins.2008.06.006
    [30] Pascual-Leone A, Rubio B, Pallardó F, Catalá MD. 1996. Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression. The Lancet, 348(9022): 233−237. doi: 10.1016/S0140-6736(96)01219-6
    [31] Philip NS, Carpenter SL, Ridout SJ, Sanchez G, Albright SE, Tyrka AR, Price LH, Carpenter LL. 2015. 5 Hz Repetitive transcranial magnetic stimulation to left prefrontal cortex for major depression. Journal of Affective Disorders, 186: 13−17. doi: 10.1016/j.jad.2014.12.024
    [32] Polanía R, Nitsche MA, Ruff CC. 2018. Studying and modifying brain function with non-invasive brain stimulation. Nature Neuroscience, 21(2): 174−187. doi: 10.1038/s41593-017-0054-4
    [33] Roet M, Hescham SA, Jahanshahi A, Rutten BPF, Anikeeva PO, Temel Y. 2019. Progress in neuromodulation of the brain: a role for magnetic nanoparticles?. Progress in Neurobiology, 177: 1−14. doi: 10.1016/j.pneurobio.2019.03.002
    [34] Salvador R, Miranda PC. 2009. Transcranial magnetic stimulation of small animals: a modeling study of the influence of coil geometry, size and orientation. In: Proceedings of 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Minneapolis, MN, USA: IEEE, 2009: 674–677.
    [35] Stubbeman WF, Zarrabi B, Bastea S, Ragland V, Khairkhah R. 2018. Bilateral neuronavigated 20Hz theta burst TMS for treatment refractory depression: an open label study. Brain Stimulation, 11(4): 953−955. doi: 10.1016/j.brs.2018.04.012
    [36] Su TP, Huang CC, Wei IH. 2005. Add-on rTMS for medication-resistant depression: a randomized, double-blind, sham-controlled trial in Chinese patients. The Journal of Clinicalpsychiatry, 66(7): 930−937.
    [37] Sun JF, Zhang Y, Yang F, Ma M, Xiong F, Gu N. 2019. Research and development of medical magnetic nanomaterials. Science Bulletin, 64(8): 842−853.
    [38] Sun P, Wang FR, Wang L, Zhang Y, Yamamoto R, Sugai T, Zhang Q, Wang ZD, Kato N. 2011. Increase in cortical pyramidal cell excitability accompanies depression-like behavior in mice: a transcranial magnetic stimulation study. The Journal of Neuroscience, 31(45): 16464−16472. doi: 10.1523/JNEUROSCI.1542-11.2011
    [39] Tang AD, Lowe AS, Garrett AR, Woodward R, Bennett W, Canty AJ, Garry MI, Hinder MR, Summers JJ, Gersner R, Rotenberg A, Thickbroom G, Walton J, Rodger J. 2016. Construction and evaluation of rodent-specific rTMS coils. Frontiers in Neural Circuits, 10: 47.
    [40] Tarapore PE, Picht T, Bulubas L, Shin Y, Kulchytska N, Meyer B, Berger MS, Nagarajan SS, Krieg SM. 2016. Safety and tolerability of navigated TMS for preoperative mapping in neurosurgical patients. Clinical Neurophysiology, 127(3): 1895−1900. doi: 10.1016/j.clinph.2015.11.042
    [41] Trevizol AP, Blumberger DM. 2019. An update on repetitive transcranial magnetic stimulation for the treatment of major depressive disorder. Clinical Pharmacology and Therapeutics, 106(4): 747−762. doi: 10.1002/cpt.1550
    [42] Vertes RP. 2006. Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience, 142(1): 1−20. doi: 10.1016/j.neuroscience.2006.06.027
    [43] Yue K, Guduru R, Hong J, Liang P, Nair M, Khizroev S. 2012. Magneto-electric nano-particles for non-invasive brain stimulation. PLoS One, 7(9): e44040. doi: 10.1371/journal.pone.0044040
  • ZR-2020-076 -Supporting_material.doc
  • 加载中
图(6)
计量
  • 文章访问数:  2894
  • HTML全文浏览量:  811
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-25
  • 录用日期:  2020-04-27
  • 网络出版日期:  2020-05-13
  • 刊出日期:  2020-07-18

目录

    /

    返回文章
    返回