尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!


The pathological role of ferroptosis in ischemia/reperfusion-related injury

Hong-Fa Yan Qing-Zhang Tuo Qiao-Zhi Yin Peng Lei

Hong-Fa Yan, Qing-Zhang Tuo, Qiao-Zhi Yin, Peng Lei. The pathological role of ferroptosis in ischemia/reperfusion-related injury. Zoological Research, 2020, 41(3): 220-230. doi: 10.24272/j.issn.2095-8137.2020.042
Citation: Hong-Fa Yan, Qing-Zhang Tuo, Qiao-Zhi Yin, Peng Lei. The pathological role of ferroptosis in ischemia/reperfusion-related injury. Zoological Research, 2020, 41(3): 220-230. doi: 10.24272/j.issn.2095-8137.2020.042


doi: 10.24272/j.issn.2095-8137.2020.042

The pathological role of ferroptosis in ischemia/reperfusion-related injury

Funds: This study was supported by grants from the Ministry of Science and Technology of China (2018YFC1312300), National Natural Science Foundation of China (81722016, 81801182), Sichuan Science and Technology Program (2018JPT0037, 2018SZ0190), and China Postdoctoral Science Foundation (2017M623041)
More Information
  • 摘要:


  • Figure  1.  Changes in the cytoplasmic environment during ischemia

    After ischemia, the amount of ATP in cells decreased with the lack of tissue energy supply. The resting potential maintained by active transport breaks down with the large outflow of calcium. Compensatory calcium influx activates downstream calcium-dependent signaling pathways. During this process, the mitochondria produce excess ROS.

    Figure  2.  The indicated pathways control the sensitivity of ferroptosis

    Lipid ROS accumulation is achieved through following major pathways: (1) iron promotes lipid oxidation by Fenton reaction; (2) the arachidonic acid (AA)-containing phosphatidylethanolamine (PE) (AA-PE)/adrenoyl (AdA)-PE is generated by acyl-CoA synthetase long-chain family member 4 (ACSL4) and lysophosphatidylcholine acyltransferase 3 (LPCAT3) and oxidized by lipoxygenases (LOXs). (3) POR can also control lipid peroxidation in ferroptosis by distinct mechanisms. Glutathione (GSH)-dependent glutathione peroxidase 4 (GPX4) and ferroptosis suppressor protein 1 (FSP1)-dependent coenzyme Q10 (CoQ10), as two parallel pathways, control generation of lipid ROS. The accumulation of lipid ROS leads to ferroptosis. PE: Phosphatidylethanolamine; LIP: Labile iron pool; NADPH: Nicotinamide adenine dinucleotide phosphate; Gln: Glutamine; Met: Methionine; Glu: Glutamate; Cys: cysteine; Gly: Glycine; GSSG: Oxidized GSH; GCL: Glutamate-cysteine ligase; GSS: Glutathione synthetase; IREB2: Iron-responsive element binding protein 2; NCOA4: Nuclear receptor coactivator 4; NFS1: Cysteine desulfurase; HO-1: Heme oxygenase-1; POR: Cytochrome P450 oxidoreductase.

  • [1] Alim I, Caulfield JT, Chen YX, Swarup V, Geschwind DH, Ivanova E, Seravalli J, Ai YX, Sansing LH, Marie EJS, Hondal RJ, Mukherjee S, Cave JW, Sagdullaev BT, Karuppagounder SS, Ratan RR. 2019. Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell, 177(5): 1262−1279. doi: 10.1016/j.cell.2019.03.032
    [2] Alvarez SW, Sviderskiy VO, Terzi EM, Papagiannakopoulos T, Moreira AL, Adams S, Sabatini DM, Birsoy K, Possemato R. 2017. Nfs1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature, 551(7682): 639−643. doi: 10.1038/nature24637
    [3] Aoyagi T, Kusakari Y, Xiao CY, Inouye BT, Takahashi M, Scherrer-Crosbie M, Rosenzweig A, Hara K, Matsui T. 2012. Cardiac mTOR protects the heart against ischemia-reperfusion injury. American Journal of Physiology-Heart and Circulatory Physiology, 303(1): H75−H85. doi: 10.1152/ajpheart.00241.2012
    [4] Baba Y, Higa JK, Shimada BK, Horiuchi KM, Suhara T, Kobayashi M, Woo JD, Aoyagi H, Marh KS, Kitaoka H, Matsui T. 2018. Protective effects of the mechanistic target of rapamycin against excess iron and ferroptosis in cardiomyocytes. American Journal of Physiology-Heart and Circulatory Physiology, 314(3): H659−H668. doi: 10.1152/ajpheart.00452.2017
    [5] Bannai S, Tsukeda H, Okumura H. 1977. Effect of antioxidants on cultured human diploid fibroblasts exposed to cystine-free medium. Biochemical and Biophysical Research Communications, 74(4): 1582−1588. doi: 10.1016/0006-291X(77)90623-4
    [6] Barayuga SM, Pang XS, Andres MA, Panee J, Bellinger FP. 2013. Methamphetamine decreases levels of glutathione peroxidases 1 and 4 in SH-SY5Y neuronal cells: protective effects of selenium. Neurotoxicology, 37: 240−246. doi: 10.1016/j.neuro.2013.05.009
    [7] Becker LC, Ambrosio G. 1987. Myocardial consequences of reperfusion. Progress in Cardiovascular Diseases, 30(1): 23−44. doi: 10.1016/0033-0620(87)90009-0
    [8] Bélanger M, Allaman I, Magistretti PJ. 2011. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metabolism, 14(6): 724−738. doi: 10.1016/j.cmet.2011.08.016
    [9] Bersuker K, Hendricks JM, Li ZP, Magtanong L, Ford B, Tang PH, Roberts MA, Tong BQ, Maimone TJ, Zoncu R, Bassik MC, Nomura DK, Dixon SJ, Olzmann JA. 2019. The coq oxidoreductase fsp1 acts parallel to GPX4 to inhibit ferroptosis. Nature, 575(7784): 688−692. doi: 10.1038/s41586-019-1705-2
    [10] Bi M, Gladbach A, van Eersel J, Ittner A, Przybyla M, van Hummel A, Chua SW, van der Hoven J, Lee WS, Müller J, Parmar J, von Jonquieres G, Stefen H, Guccione E, Fath T, Housley GD, Klugmann M, Ke YD, Ittner LM. 2017. Tau exacerbates excitotoxic brain damage in an animal model of stroke. Nature Communications, 8(1): 473. doi: 10.1038/s41467-017-00618-0
    [11] Brigelius-Flohé R, Maiorino M. 2013. Glutathione peroxidases. Biochimica et Biophysica Acta (BBA) - General Subjects, 1830(5): 3289−3303. doi: 10.1016/j.bbagen.2012.11.020
    [12] Brown CW, Amante JJ, Chhoy P, Elaimy AL, Liu HB, Zhu LJ, Baer CE, Dixon SJ, Mercurio AM. 2019. Prominin2 drives ferroptosis resistance by stimulating iron export. Developmental Cell, 51(5): 575−586. doi: 10.1016/j.devcel.2019.10.007
    [13] Bulluck H, Rosmini S, Abdel-Gadir A, White SK, Bhuva AN, Treibel TA, Fontana M, Ramlall M, Hamarneh A, Sirker A, Herrey AS, Manisty C, Yellon DM, Kellman P, Moon JC, Hausenloy DJ. 2016. Residual myocardial iron following intramyocardial hemorrhage during the convalescent phase of reperfused st-segment-elevation myocardial infarction and adverse left ventricular remodeling. Circulation: Cardiovascular Imaging, 9(10): e004940.
    [14] Cadenas S. 2018. Ros and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radical Biology and Medicine, 117: 76−89. doi: 10.1016/j.freeradbiomed.2018.01.024
    [15] Cardoso BR, Hare DJ, Bush AI, Roberts BR. 2017. Glutathione peroxidase 4: a new player in neurodegeneration?. Molecular Psychiatry, 22(3): 328−335. doi: 10.1038/mp.2016.196
    [16] Castaneda MP, Swiatecka-Urban A, Mitsnefes MM, Feuerstein D, Kaskel FJ, Tellis V, Devarajan P. 2003. Activation of mitochondrial apoptotic pathways in human renal allografts after ischemia-reperfusion injury. Transplantation, 76(1): 50−54. doi: 10.1097/01.TP.0000069835.95442.9F
    [17] Castellanos M, Puig N, Carbonell T, Castillo J, Martinez JM, Rama R, Dávalos A. 2002. Iron intake increases infarct volume after permanent middle cerebral artery occlusion in rats. Brain Research, 952(1): 1−6. doi: 10.1016/S0006-8993(02)03179-7
    [18] Chan W, Taylor AJ, Ellims AH, Lefkovits L, Wong C, Kingwell BA, Natoli A, Croft KD, Mori T, Kaye DM, Dart AM, Duffy SJ. 2012. Effect of iron chelation on myocardial infarct size and oxidative stress in ST-elevation-myocardial infarction. Circulation: Cardiovascular Interventions, 5(2): 270−278. doi: 10.1161/CIRCINTERVENTIONS.111.966226
    [19] Chang LC, Chiang SK, Chen SE, Yu YL, Chou RH, Chang WC. 2018. Heme oxygenase-1 mediates bay 11-7085 induced ferroptosis. Cancer Letters, 416: 124−137. doi: 10.1016/j.canlet.2017.12.025
    [20] Choi DW. 1988. Glutamate neurotoxicity and diseases of the nervous system. Neuron, 1(8): 623−634. doi: 10.1016/0896-6273(88)90162-6
    [21] Conrad M, Pratt DA. 2019. The chemical basis of ferroptosis. Nature Chemical Biology, 15(12): 1137−1147. doi: 10.1038/s41589-019-0408-1
    [22] Conrad M, Sato H. 2012. The oxidative stress-inducible cystine/glutamate antiporter, system : cystine supplier and beyond. Amino Acids, 42(1): 231−246. doi: 10.1007/s00726-011-0867-5
    [23] Dabkowski ER, Williamson CL, Hollander JM. 2008. Mitochondria-specific transgenic overexpression of phospholipid hydroperoxide glutathione peroxidase (GPx4) attenuates ischemia/reperfusion-associated cardiac dysfunction. Free Radical Biology and Medicine, 45(6): 855−865. doi: 10.1016/j.freeradbiomed.2008.06.021
    [24] Dare AJ, Bolton EA, Pettigrew GJ, Bradley JA, Saeb-Parsy K, Murphy MP. 2015. Protection against renal ischemia-reperfusion injury in vivo by the mitochondria targeted antioxidant mitoq. Redox Biology, 5: 163−168. doi: 10.1016/j.redox.2015.04.008
    [25] Davis S, Helfaer MA, Traystman RJ, Hurn PD. 1997. Parallel antioxidant and antiexcitotoxic therapy improves outcome after incomplete global cerebral ischemia in dogs. Stroke, 28(1): 198−204. doi: 10.1161/01.STR.28.1.198
    [26] Dietrich RB, Bradley WG Jr. 1988. Iron accumulation in the basal ganglia following severe ischemic-anoxic insults in children. Radiology, 168(1): 203−206. doi: 10.1148/radiology.168.1.3380958
    [27] Ding H, Yan CZ, Shi HL, Zhao YS, Chang SY, Yu P, Wu WS, Zhao CY, Chang YZ, Duan XL. 2011. Hepcidin is involved in iron regulation in the ischemic brain. PLoS One, 6(9): e25324. doi: 10.1371/journal.pone.0025324
    [28] Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison III B, Stockwell BR. 2012. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 149(5): 1060−1072. doi: 10.1016/j.cell.2012.03.042
    [29] Dixon SJ, Winter GE, Musavi LS, Lee ED, Snijder B, Rebsamen M, Superti-Furga G, Stockwell BR. 2015. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chemical Biology, 10(7): 1604−1609. doi: 10.1021/acschembio.5b00245
    [30] Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, Prokisch H, Trümbach D, Mao GW, Qu F, Bayir H, Füllekrug J, Scheel CH, Wurst W, Schick JA, Kagan VE, Angeli JPF, Conrad M. 2017. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nature Chemical Biology, 13(1): 91−98. doi: 10.1038/nchembio.2239
    [31] Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, Grocin AG, Xavier da Silva TN, Panzilius E, Scheel CH, Mourão A, Buday K, Sato M, Wanninger J, Vignane T, Mohana V, Rehberg M, Flatley A, Schepers A, Kurz A, White D, Sauer M, Sattler M, Tate EW, Schmitz W, Schulze A, O'Donnell V, Proneth B, Popowicz GM, Pratt DA, Angeli JPF, Conrad M. 2019. Fsp1 is a glutathione-independent ferroptosis suppressor. Nature, 575(7784): 693−698. doi: 10.1038/s41586-019-1707-0
    [32] Dolma S, Lessnick SL, Hahn WC, Stockwell BR. 2003. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell, 3(3): 285−296. doi: 10.1016/S1535-6108(03)00050-3
    [33] Drossos G, Lazou A, Panagopoulos P, Westaby S. 1995. Deferoxamine cardioplegia reduces superoxide radical production in human myocardium. The Annals of Thoracic Surgery, 59(1): 169−172. doi: 10.1016/0003-4975(94)00726-N
    [34] Eltzschig HK, Eckle T. 2011. Ischemia and reperfusion-from mechanism to translation. Nature Medicine, 17(11): 1391−1401. doi: 10.1038/nm.2507
    [35] Fang KM, Cheng FC, Huang YL, Chung SY, Jian ZY, Lin MC. 2013. Trace element, antioxidant activity, and lipid peroxidation levels in brain cortex of gerbils after cerebral ischemic injury. Biological Trace Element Research, 152(1): 66−74. doi: 10.1007/s12011-012-9596-1
    [36] Fang XX, Wang H, Han D, Xie EJ, Yang X, Wei JY, Gu SS, Gao F, Zhu NL, Yin XJ, Cheng Q, Zhang P, Dai W, Chen JH, Yang FQ, Yang HT, Linkermann A, Gu W, Min JX, Wang FD. 2019. Ferroptosis as a target for protection against cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 116(7): 2672−2680. doi: 10.1073/pnas.1821022116
    [37] Farmer EE, Mueller MJ. 2013. ROS-mediated lipid peroxidation and res-activated signaling. Annual Review of Plant Biology, 64: 429−450. doi: 10.1146/annurev-arplant-050312-120132
    [38] Forcina GC, Dixon SJ. 2019. GPX4 at the crossroads of lipid homeostasis and ferroptosis. Proteomics, 19(18): 1800311. doi: 10.1002/pmic.201800311
    [39] Frei B, Kim MC, Ames BN. 1990. Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Proceedings of the National Academy of Sciences of the United States of America, 87(12): 4879−4883. doi: 10.1073/pnas.87.12.4879
    [40] Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A, Eggenhofer E, Basavarajappa D, Rådmark O, Kobayashi S, Seibt T, Beck H, Neff F, Esposito I, Wanke R, Förster H, Yefremova O, Heinrichmeyer M, Bornkamm GW, Geissler EK, Thomas SB, Stockwell BR, O'Donnell VB, Kagan VE, Schick JA, Conrad M. 2014. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nature Cell Biology, 16(12): 1180−1191. doi: 10.1038/ncb3064
    [41] Fujiki K, Inamura H, Sugaya T, Matsuoka M. 2019. Blockade of ALK4/5 signaling suppresses cadmium- and erastin-induced cell death in renal proximal tubular epithelial cells via distinct signaling mechanisms. Cell Death & Differentiation, 26(11): 2371−2385.
    [42] Galaris D, Barbouti A, Korantzopoulos P. 2006. Oxidative stress in hepatic ischemia-reperfusion injury: The role of antioxidants and iron chelating compounds. Current Pharmaceutical Design, 12(23): 2875−2890. doi: 10.2174/138161206777947614
    [43] Gao MH, Monian P, Quadri N, Ramasamy R, Jiang XJ. 2015. Glutaminolysis and transferrin regulate ferroptosis. Molecular Cell, 59(2): 298−308. doi: 10.1016/j.molcel.2015.06.011
    [44] Gao MH, Monian P, Pan QH, Zhang W, Xiang J, Jiang XJ. 2016. Ferroptosis is an autophagic cell death process. Cell Research, 26(9): 1021−1032. doi: 10.1038/cr.2016.95
    [45] Gill I, Valivety R. 1997a. Polyunsaturated fatty acids, part 1: occurrence, biological activities and applications. Trends in Biotechnology, 15(10): 401−409. doi: 10.1016/S0167-7799(97)01076-7
    [46] Gill I, Valivety R. 1997b. Polyunsaturated fatty acids, part 2: biotransformations and biotechnological applications. Trends in Biotechnology, 15(11): 470−478. doi: 10.1016/S0167-7799(97)01077-9
    [47] Gores GJ, Nieminen AL, Fleishman KE, Dawson TL, Herman B, Lemasters JJ. 1988. Extracellular acidosis delays onset of cell death in atp-depleted hepatocytes. American Journal of Physiology Cell Physiology, 255(3): C315−C322. doi: 10.1152/ajpcell.1988.255.3.C315
    [48] Granger DN, Stokes KY, Shigematsu T, Cerwinka WH, Tailor A, Krieglstein CF. 2001. Splanchnic ischaemia-reperfusion injury: mechanistic insights provided by mutant mice. Acta Physiologica Scandinavica, 173(1): 83−91. doi: 10.1046/j.1365-201X.2001.00888.x
    [49] Grivennikova VG, Vinogradov AD. 2006. Generation of superoxide by the mitochondrial complex I. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1757(5−6): 553−561. doi: 10.1016/j.bbabio.2006.03.013
    [50] Guan XY, Li XL, Yang XJ, Yan JW, Shi PL, Ba LN, Cao YG, Wang P. 2019. The neuroprotective effects of carvacrol on ischemia/reperfusion-induced hippocampal neuronal impairment by ferroptosis mitigation. Life Sciences, 235: 116795. doi: 10.1016/j.lfs.2019.116795
    [51] Gudipaty SA, Conner CM, Rosenblatt J, Montell DJ. 2018. Unconventional ways to live and die: Cell death and survival in development, homeostasis, and disease. Annual Review of Cell and Developmental Biology, 34: 311−332. doi: 10.1146/annurev-cellbio-100616-060748
    [52] Halestrap AP. 2006. Calcium, mitochondria and reperfusion injury: a pore way to die. Biochemical Society Transactions, 34(2): 232−237. doi: 10.1042/BST0340232
    [53] Halliwell B, Cross CE. 1994. Oxygen-derived species: their relation to human disease and environmental stress. Environmental Health Perspectives, 102(S10): 5−12.
    [54] Hanson LR, Roeytenberg A, Martinez PM, Coppes VG, Sweet DC, Rao RJ, Marti DL, Hoekman JD, Matthews RB, Frey WH, Panter SS. 2009. Intranasal deferoxamine provides increased brain exposure and significant protection in rat ischemic stroke. Journal of Pharmacology and Experimental Therapeutics, 330(3): 679−686. doi: 10.1124/jpet.108.149807
    [55] Hassannia B, Wiernicki B, Ingold I, Qu F, Van Herck S, Tyurina YY, Bayır H, Abhari BA, Angeli JPF, Choi SM, Meul E, Heyninck K, Declerck K, Chirumamilla CS, Lahtela-Kakkonen M, Van Camp G, Krysko DV, Ekert PG, Fulda S, De Geest BG, Conrad M, Kagan VE, Vanden Berghe W, Vandenabeele P, Vanden Berghe T. 2018. Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. The Journal of Clinical Investigation, 128(8): 3341−3355. doi: 10.1172/JCI99032
    [56] Hassannia B, Vandenabeele P, Vanden Berghe T. 2019. Targeting ferroptosis to iron out cancer. Cancer Cell, 35(6): 830−849. doi: 10.1016/j.ccell.2019.04.002
    [57] Hess ML, Manson NH. 1984. Molecular oxygen: friend and foe: the role of the oxygen free radical system in the calcium paradox, the oxygen paradox and ischemia/reperfusion injury. Journal of Molecular and Cellular Cardiology, 16(11): 969−985. doi: 10.1016/S0022-2828(84)80011-5
    [58] Hou W, Xie YC, Song XX, Sun XF, Lotze MT, Zeh III HJ, Kang R, Tang DL. 2016. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy, 12(8): 1425−1428. doi: 10.1080/15548627.2016.1187366
    [59] Huang LL, Liao XH, Sun H, Jiang X, Liu Q, Zhang L. 2019. Augmenter of liver regeneration protects the kidney from ischaemia-reperfusion injury in ferroptosis. Journal of Cellular and Molecular Medicine, 23(6): 4153−4164. doi: 10.1111/jcmm.14302
    [60] Iadecola C, Anrather J. 2011. Stroke research at a crossroad: asking the brain for directions. Nature Neuroscience, 14(11): 1363−1368. doi: 10.1038/nn.2953
    [61] Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, Roveri A, Peng XX, Porto Freitas F, Seibt T, Mehr L, Aichler M, Walch A, Lamp D, Jastroch M, Miyamoto S, Wurst W, Ursini F, Arnér ESJ, Fradejas-Villar N, Schweizer U, Zischka H, Friedmann Angeli JP, Conrad M. 2018. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell, 172(3): 409−422. doi: 10.1016/j.cell.2017.11.048
    [62] Jiang Y, Li LL, Tan XD, Liu B, Zhang YH, Li CQ. 2015. miR-210 mediates vagus nerve stimulation-induced antioxidant stress and anti-apoptosis reactions following cerebral ischemia/reperfusion injury in rats. Journal of Neurochemistry, 134(1): 173−181. doi: 10.1111/jnc.13097
    [63] Kagan VE, Mao G, Qu F, Angeli JPF, Doll S, Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB, Kapralov AA, Amoscato AA, Jiang JF, Anthonymuthu T, Mohammadyani D, Yang Q, Proneth B, Klein-Seetharaman J, Watkins S, Bahar I, Greenberger J, Mallampalli RK, Stockwell BR, Tyurina YY, Conrad M, Bayır H. 2017. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nature Chemical Biology, 13(1): 81−90. doi: 10.1038/nchembio.2238
    [64] Kakhlon O, Cabantchik ZI. 2002. The labile iron pool: characterization, measurement, and participation in cellular processes. Free Radical Biology and Medicine, 33(8): 1037−1046. doi: 10.1016/S0891-5849(02)01006-7
    [65] Ke BW, Tian M, Li JJ, Liu B, He G. 2016. Targeting programmed cell death using small-molecule compounds to improve potential cancer therapy. Medicinal Research Reviews, 36(6): 983−1035. doi: 10.1002/med.21398
    [66] Kimura S, Bassett AL, Gaide MS, Kozlovskis PL, Myerburg RJ. 1986. Regional changes in intracellular potassium and sodium activity after healing of experimental myocardial infarction in cats. Circulation Research, 58(2): 202−208. doi: 10.1161/01.RES.58.2.202
    [67] Kondo Y, Ogawa N, Asanuma M, Ota Z, Mori A. 1995. Regional differences in late-onset iron deposition, ferritin, transferrin, astrocyte proliferation, and microglial activation after transient forebrain ischemia in rat brain. Journal of Cerebral Blood Flow & Metabolism, 15(2): 216−226.
    [68] Kondo Y, Asanuma M, Nishibayashi S, Iwata E, Ogawa N. 1997. Late-onset lipid peroxidation and neuronal cell death following transient forebrain ischemia in rat brain. Brain Research, 772(1−2): 37−44. doi: 10.1016/S0006-8993(97)00836-6
    [69] Krishnamurthi RV, Feigin VL, Forouzanfar MH, Mensah GA, Connor M, Bennett DA, Moran AE, Sacco RL, Anderson LM, Truelsen T, O'Donnell M, Venketasubramanian N, Barker-Collo S, Lawes CMM, Wang WZ, Shinohara Y, Witt E, Ezzati M, Naghavi M, Murray C. 2013. Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990-2010: findings from the global burden of disease study 2010. The Lancet Global Health, 1(5): e259−e281. doi: 10.1016/S2214-109X(13)70089-5
    [70] Kruszewski M. 2003. Labile iron pool: the main determinant of cellular response to oxidative stress. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 531(1−2): 81−92. doi: 10.1016/j.mrfmmm.2003.08.004
    [71] Lagarde M, Calzada C, Jouvène C, Bernoud-Hubac N, Létisse M, Guichardant M, Véricel E. 2015. Functional fluxolipidomics of polyunsaturated fatty acids and oxygenated metabolites in the blood vessel compartment. Progress in Lipid Research, 60: 41−49. doi: 10.1016/j.plipres.2015.10.001
    [72] Lei P, Ayton S, Finkelstein DI, Spoerri L, Ciccotosto GD, Wright DK, Wong BXW, Adlard PA, Cherny RA, Lam LQ, Roberts BR, Volitakis I, Egan GF, McLean CA, Cappai R, Duce JA, Bush AI. 2012. Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export. Nature Medicine, 18(2): 291−295. doi: 10.1038/nm.2613
    [73] Lei P, Ayton S, Appukuttan AT, Moon S, Duce JA, Volitakis I, Cherny R, Wood SJ, Greenough M, Berger G, Pantelis C, McGorry P, Yung A, Finkelstein DI, Bush AI. 2017. Lithium suppression of tau induces brain iron accumulation and neurodegeneration. Molecular Psychiatry, 22(3): 396−406. doi: 10.1038/mp.2016.96
    [74] Lesnefsky EJ, Hedlund BE, Hallaway PE, Horwitz LD. 1990. High-dose iron-chelator therapy during reperfusion with deferoxamine-hydroxyethyl starch conjugate fails to reduce canine infarct size. Journal of Cardiovascular Pharmacology, 16(4): 523−528. doi: 10.1097/00005344-199010000-00002
    [75] Li L, Hao Y, Zhao Y, Wang HJ, Zhao XJ, Jiang Y, Guo FL. 2018. Ferroptosis is associated with oxygen-glucose deprivation/reoxygenation-induced sertoli cell death. International Journal of Molecular Medicine, 41(15): 3051−3062.
    [76] Li Y, Feng DC, Wang ZY, Zhao Y, Sun RM, Tian DH, Liu DS, Zhang F, Ning SL, Yao JH, Tian XF. 2019. Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death & Differentiation, 26(11): 2284−2299.
    [77] Liang C, Zhang XL, Yang MS, Dong XC. 2019. Recent progress in ferroptosis inducers for cancer therapy. Advanced Materials, 31(51): 1904197. doi: 10.1002/adma.201904197
    [78] Linkermann A, Bräsen JH, Darding M, Jin MK, Sanz AB, Heller JO, De Zen F, Weinlich R, Ortiz A, Walczak H, Weinberg JM, Green DR, Kunzendorf U, Krautwald S. 2013. Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. Proceedings of the National Academy of Sciences of the United States of America, 110(29): 12024−12029. doi: 10.1073/pnas.1305538110
    [79] Linkermann A, Skouta R, Himmerkus N, Mulay SR, Dewitz C, De Zen F, Prokai A, Zuchtriegel G, Krombach F, Welz PS, Weinlich R, Vanden Berghe T, Vandenabeele P, Pasparakis M, Bleich M, Weinberg JM, Reichel CA, Bräsen JH, Kunzendorf U, Anders HJ, Stockwell BR, Green DR, Krautwald S. 2014. Synchronized renal tubular cell death involves ferroptosis. Proceedings of the National Academy of Sciences of the United States of America, 111(47): 16836−16841. doi: 10.1073/pnas.1415518111
    [80] Linkermann A. 2016. Nonapoptotic cell death in acute kidney injury and transplantation. Kidney International, 89(1): 46−57. doi: 10.1016/j.kint.2015.10.008
    [81] Maiorino M, Conrad M, Ursini F. 2018. GPx4, lipid peroxidation, and cell death: Discoveries, rediscoveries, and open issues. Antioxidants & Redox Signaling, 29(1): 61−74.
    [82] McBean GJ. 2012. The transsulfuration pathway: a source of cysteine for glutathione in astrocytes. Amino Acids, 42(1): 199−205. doi: 10.1007/s00726-011-0864-8
    [83] Meister A, Anderson ME. 1983. Glutathione. Annual Review of Biochemistry, 52: 711−760. doi: 10.1146/annurev.bi.52.070183.003431
    [84] Mullen PJ, Yu R, Longo J, Archer MC, Penn LZ. 2016. The interplay between cell signalling and the mevalonate pathway in cancer. Nature Reviews Cancer, 16(11): 718−731. doi: 10.1038/nrc.2016.76
    [85] Müller T, Dewitz C, Schmitz J, Schröder AS, Bräsen JH, Stockwell BR, Murphy JM, Kunzendorf U, Krautwald S. 2017. Necroptosis and ferroptosis are alternative cell death pathways that operate in acute kidney failure. Cellular and Molecular Life Sciences, 74(19): 3631−3645. doi: 10.1007/s00018-017-2547-4
    [86] Murphy TH, Miyamoto M, Sastre A, Schnaar RL, Coyle JT. 1989. Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron, 2(6): 1547−1558. doi: 10.1016/0896-6273(89)90043-3
    [87] Nayler WG. 1981. The role of calcium in the ischemic myocardium. American Journal of Pathology, 102(2): 262−270.
    [88] Ni DL, Wei H, Chen WY, Bao QQ, Rosenkrans ZT, Barnhart TE, Ferreira Carolina A, Wang YP, Yao HL, Sun TW, Jiang DW, Li SY, Cao TY, Liu ZF, Engle JW, Hu P, Lan XL, Cai WB. 2019. Ceria nanoparticles meet hepatic ischemia-reperfusion injury: the perfect imperfection. Advanced Materials, 31(40): 1902956. doi: 10.1002/adma.201902956
    [89] Olzmann JA, Carvalho P. 2019. Dynamics and functions of lipid droplets. Nature Reviews Molecular Cell Biology, 20(3): 137−155. doi: 10.1038/s41580-018-0085-z
    [90] Park UJ, Lee YA, Won SM, Lee JH, Kang SH, Springer JE, Lee YB, Gwag BJ. 2011. Blood-derived iron mediates free radical production and neuronal death in the hippocampal ca1 area following transient forebrain ischemia in rat. Acta Neuropathologica, 121(4): 459−473. doi: 10.1007/s00401-010-0785-8
    [91] Patt A, Horesh IR, Berger EM, Harken AH, Repine JE. 1990. Iron depletion or chelation reduces ischemia/reperfusion-induced edema in gerbil brains. Journal of Pediatric Surgery, 25(2): 224−228. doi: 10.1016/0022-3468(90)90407-Z
    [92] Pefanis A, Ierino FL, Murphy JM, Cowan PJ. 2019. Regulated necrosis in kidney ischemia-reperfusion injury. Kidney International, 96(2): 291−301. doi: 10.1016/j.kint.2019.02.009
    [93] Perico N, Cattaneo D, Sayegh MH, Remuzzi G. 2004. Delayed graft function in kidney transplantation. The Lancet, 364(9447): 1814−1827. doi: 10.1016/S0140-6736(04)17406-0
    [94] Prass K, Ruscher K, Karsch M, Isaev N, Megow D, Priller J, Scharff A, Dirnagl U, Meisel A. 2002. Desferrioxamine induces delayed tolerance against cerebral ischemia in vivo and in vitro. Journal of Cerebral Blood Flow & Metabolism, 22(5): 520−525.
    [95] Raat NJ, Shiva S, Gladwin MT. 2009. Effects of nitrite on modulating ros generation following ischemia and reperfusion. Advanced Drug Delivery Reviews, 61(4): 339−350. doi: 10.1016/j.addr.2009.02.002
    [96] Rouzer CA, Marnett LJ. 2003. Mechanism of free radical oxygenation of polyunsaturated fatty acids by cyclooxygenases. Chemical Reviews, 103(6): 2239−2304. doi: 10.1021/cr000068x
    [97] Scindia Y, Dey P, Thirunagari A, Huang LP, Rosin DL, Floris M, Okusa MD, Swaminathan S. 2015. Hepcidin mitigates renal ischemia-reperfusion injury by modulating systemic iron homeostasis. Journal of the American Society of Nephrology, 26(11): 2800−2814. doi: 10.1681/ASN.2014101037
    [98] Scindia Y, Leeds J, Swaminathan S. 2019. Iron homeostasis in healthy kidney and its role in acute kidney injury. Seminars in Nephrology, 39(1): 76−84. doi: 10.1016/j.semnephrol.2018.10.006
    [99] Shimada K, Skouta R, Kaplan A, Yang WS, Hayano M, Dixon SJ, Brown LM, Valenzuela CA, Wolpaw AJ, Stockwell BR. 2016. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nature Chemical Biology, 12(7): 497−503. doi: 10.1038/nchembio.2079
    [100] Skouta R, Dixon SJ, Wang JL, Dunn DE, Orman M, Shimada K, Rosenberg PA, Lo DC, Weinberg JM, Linkermann A, Stockwell BR. 2014. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. Journal of the American Chemical Society, 136(12): 4551−4556. doi: 10.1021/ja411006a
    [101] Sogabe K, Roeser NF, Venkatachalam MA, Weinberg JM. 1996. Differential cytoprotection by glycine against oxidant damage to proximal tubule cells. Kidney International, 50(3): 845−854. doi: 10.1038/ki.1996.384
    [102] Song EQ, Su CY, Fu JL, Xia XM, Yang SY, Xiao CX, Lu B, Chen HJ, Sun ZY, Wu SM, Song Y. 2014. Selenium supplementation shows protective effects against patulin-induced brain damage in mice via increases in gsh-related enzyme activity and expression. Life Sciences, 109(1): 37−43. doi: 10.1016/j.lfs.2014.05.022
    [103] Stamenkovic A, Pierce GN, Ravandi A. 2019. Phospholipid oxidation products in ferroptotic myocardial cell death. American Journal of Physiology-Heart and Circulatory Physiology, 317(1): H156−H163. doi: 10.1152/ajpheart.00076.2019
    [104] Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, Noel K, Jiang XJ, Linkermann A, Murphy ME, Overholtzer M, Oyagi A, Pagnussat GC, Park J, Ran QT, Rosenfeld CS, Salnikow K, Tang DL, Torti FM, Torti SV, Toyokuni S, Woerpel KA, Zhang DD. 2017. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell, 171(2): 273−285. doi: 10.1016/j.cell.2017.09.021
    [105] Sun XF, Ou ZH, Chen RC, Niu XH, Chen D, Kang R, Tang DL. 2016. Activation of the p62-keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology, 63(1): 173−184. doi: 10.1002/hep.28251
    [106] Sun ZX, Zhao TY, Lv SJ, Gao Y, Masters J, Weng H. 2018. Dexmedetomidine attenuates spinal cord ischemia-reperfusion injury through both anti-inflammation and anti-apoptosis mechanisms in rabbits. Journal of Translational Medicine, 16(11): 209.
    [107] Terman A, Kurz T. 2013. Lysosomal iron, iron chelation, and cell death. Antioxidants & Redox Signaling, 18(8): 888−898.
    [108] Thomas JP, Geiger PG, Maiorino M, Ursini F, Girotti AW. 1990. Enzymatic reduction of phospholipid and cholesterol hydroperoxides in artificial bilayers and lipoproteins. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 1045(3): 252−260. doi: 10.1016/0005-2760(90)90128-K
    [109] Tosatto SCE, Bosello V, Fogolari F, Mauri P, Roveri A, Toppo S, Flohé L, Ursini F, Matilde M. 2008. The catalytic site of glutathione peroxidases. Antioxidants & Redox Signaling, 10(9): 1515−1526.
    [110] Tuo QZ, Lei P, Jackman KA, Li XL, Xiong H, Li XL, Liuyang ZY, Roisman L, Zhang ST, Ayton S, Wang Q, Crouch PJ, Ganio K, Wang XC, Pei L, Adlard PA, Lu YM, Cappai R, Wang JZ, Liu R, Bush AI. 2017. Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Molecular Psychiatry, 22(11): 1520−1530. doi: 10.1038/mp.2017.171
    [111] Weisfeldt ML, Zweier J, Ambrosio G, Becker LC, Flaherty JT. 1988. In: Simic MG, Taylor KA, Ward JF, von Sonntag C. Evidence that free radicals result in reperfusion injury in heart muscle. Oxygen Radicals in Biology and Medicine. Boston, MA: Springer, 911−919.
    [112] Wenzel SE, Tyurina YY, Zhao J, St Croix CM, Dar HH, Mao G, Tyurin VA, Anthonymuthu TS, Kapralov AA, Amoscato AA, Mikulska-Ruminska K, Shrivastava IH, Kenny EM, Yang Q, Rosenbaum JC, Sparvero LJ, Emlet DR, Wen XY, Minami Y, Qu F, Watkins SC, Holman TR, Van Demark AP, Kellum JA, Bahar I, Bayır H, Kagan VE. 2017. Pebp1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell, 171(3): 628−641. doi: 10.1016/j.cell.2017.09.044
    [113] WHO. 2016. Global burden of stroke. https://www.who.int/cardiovascular_diseases/en/cvd_atlas_15_burden_stroke.pdf.
    [114] Wu JR, Tuo QZ, Lei P. 2018. Ferroptosis, a recent defined form of critical cell death in neurological disorders. Journal of Molecular Neuroscience, 66(2): 197−206. doi: 10.1007/s12031-018-1155-6
    [115] Wu M, Xu LG, Li XY, Zhai ZH, Shu HB. 2002. Amid, an apoptosis-inducing factor-homologous mitochondrion-associated protein, induces caspase-independent apoptosis. Journal of Biological Chemistry, 277(28): 25617−25623. doi: 10.1074/jbc.M202285200
    [116] Xu XM, Turanov AA, Carlson BA, Yoo MH, Everley RA, Nandakumar R, Sorokina I, Gygi SP, Gladyshev VN, Hatfield DL. 2010. Targeted insertion of cysteine by decoding uga codons with mammalian selenocysteine machinery. Proceedings of the National Academy of Sciences of the United States of America, 107(50): 21430−21434. doi: 10.1073/pnas.1009947107
    [117] Yagoda N, von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ, Wolpaw AJ, Smukste I, Peltier JM, Boniface JJ, Smith R, Lessnick SL, Sahasrabudhe S, Stockwell BR. 2007. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature, 447(7146): 864−868.
    [118] Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, Brown LM,, Girotti AW, Cornish VW, Schreiber SL, Stockwell BR. 2014. Regulation of ferroptotic cancer cell death by GPX4. Cell, 156(1−2): 317−331. doi: 10.1016/j.cell.2013.12.010
    [119] Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR. 2016. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proceedings of the National Academy of Sciences of the United States of America, 113(34): E4966−E4975. doi: 10.1073/pnas.1603244113
    [120] Yellon DM, Hausenloy DJ. 2007. Myocardial reperfusion injury. New England Journal of Medicine, 357(11): 1121−1135. doi: 10.1056/NEJMra071667
    [121] Yeo LL, Paliwal P, Teoh HL, Seet RC, Chan BPL, Liang S, Venketasubramanian N, Rathakrishnan R, Ahmad A, Ng KW, Loh PK, Ong JJ, Wakerley BR, Chong VF, Bathla G, Sharma VK. 2013. Timing of recanalization after intravenous thrombolysis and functional outcomes after acute ischemic stroke. JAMA Neurology, 70(3): 353−358. doi: 10.1001/2013.jamaneurol.547
    [122] Yu LL, Huang B, Po SS, Tan TT, Wang ML, Zhou LP, Meng GN, Yuan SX, Zhou XY, Li XF, Wang Z, Wang SY, Jiang H. 2017. Low-level tragus stimulation for the treatment of ischemia and reperfusion injury in patients with st-segment elevation myocardial infarction: a proof-of-concept study. JACC: Cardiovascular Interventions, 10(15): 1511−1520. doi: 10.1016/j.jcin.2017.04.036
    [123] Yu Y, Song J, Guo X, Wang S, Yang X, Chen L, Wei JY. 2014. Characterization and structural analysis of human selenium-dependent glutathione peroxidase 4 mutant expressed in Escherichia coli. Free Radical Biology and Medicine, 71: 332−338. doi: 10.1016/j.freeradbiomed.2014.03.032
    [124] Zhang C, Zheng L, Li L, Wang LY, Li LP, Huang S, Gu CL, Zhang LX, Yang C, Zhu TY, Rong RM. 2014. Rapamycin protects kidney against ischemia reperfusion injury through recruitment of NKT cells. Journal of Translational Medicine, 12: 224. doi: 10.1186/s12967-014-0224-z
    [125] Zhao YS, Xin Z, Li NN, Chang SY, Chen YD, Geng LN, Chang HR, Shi HL, Chang YZ. 2018. Nano-liposomes of lycopene reduces ischemic brain damage in rodents by regulating iron metabolism. Free Radical Biology and Medicine, 124: 1−11. doi: 10.1016/j.freeradbiomed.2018.05.082
    [126] Zhou H, Ma Q, Zhu PJ, Ren J, Reiter RJ, Chen YD. 2018. Protective role of melatonin in cardiac ischemia-reperfusion injury: from pathogenesis to targeted therapy. Journal of Pineal Research, 64(3): e12471. doi: 10.1111/jpi.12471
    [127] Zou YL, Li HX, Graham ET, Deik AA, Eaton JK, Wang WY, Sandoval-Gomez G, Clish CB, Doench JG, Schreiber SL. 2020. Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nature Chemical Biology, 16(3): 302−309. doi: 10.1038/s41589-020-0472-6
    [128] Zweier JL, Flaherty JT, Weisfeldt ML. 1987. Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proceedings of the National Academy of Sciences of the United States of America, 84(5): 1404−1407. doi: 10.1073/pnas.84.5.1404
  • 加载中
  • 文章访问数:  9125
  • HTML全文浏览量:  3108
  • PDF下载量:  552
  • 被引次数: 0
  • 收稿日期:  2020-03-08
  • 录用日期:  2020-04-20
  • 网络出版日期:  2020-04-22
  • 刊出日期:  2020-05-18