留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Co-localization of two-color rAAV2-retro confirms the dispersion characteristics of efferent projections of mitral cells in mouse accessory olfactory bulb

Ning Zheng Zhi-Zhong Wang Song-Wei Wang Fang-Jia Yang Xu-Tao Zhu Chen Lu Anne Manyande Xiao-Ping Rao Fu-Qiang Xu

Ning Zheng, Zhi-Zhong Wang, Song-Wei Wang, Fang-Jia Yang, Xu-Tao Zhu, Chen Lu, Anne Manyande, Xiao-Ping Rao, Fu-Qiang Xu. Co-localization of two-color rAAV2-retro confirms the dispersion characteristics of efferent projections of mitral cells in mouse accessory olfactory bulb. Zoological Research, 2020, 41(2): 148-156. doi: 10.24272/j.issn.2095-8137.2020.020
Citation: Ning Zheng, Zhi-Zhong Wang, Song-Wei Wang, Fang-Jia Yang, Xu-Tao Zhu, Chen Lu, Anne Manyande, Xiao-Ping Rao, Fu-Qiang Xu. Co-localization of two-color rAAV2-retro confirms the dispersion characteristics of efferent projections of mitral cells in mouse accessory olfactory bulb. Zoological Research, 2020, 41(2): 148-156. doi: 10.24272/j.issn.2095-8137.2020.020

利用两种携带不同荧光蛋白的逆行感染的腺相关病毒证明小鼠副嗅球的向心投射具有弥散特征

doi: 10.24272/j.issn.2095-8137.2020.020

Co-localization of two-color rAAV2-retro confirms the dispersion characteristics of efferent projections of mitral cells in mouse accessory olfactory bulb

Funds: This work was supported by the National Natural Science Foundation of China (31400946, 31771156, 91632303/H09, 91732304 and 31830035) and Strategic Priority Research Program of the Chinese Academy of Sciences (XDB32030200)
More Information
  • 摘要:

    脊椎动物拥有主嗅和副嗅两套嗅觉系统,共同感知和处理挥发性和非挥发性的社会性化学信息,进而调控不同的性行为和社会行为。副嗅球是副嗅系统进行信息传递和处理的第一级中枢,位于主嗅球的背后侧。由于其特殊的解剖位置和缺乏特异性分子细胞标记,我们对副嗅球的内部和外部神经网络了解得非常有限。本文中,我们利用可以在轴突末端吸收并逆行传递和感染神经元胞体的腺相关病毒(retro-rAAV),在小鼠副嗅皮层(终纹床核、皮层杏仁核前侧、中央杏仁核和皮层杏仁核后内侧)注射retro-rAAV,成功实现了对小鼠副嗅球内投射神经元的荧光标记,证明了该方法的有效性。在此基础上,我们利用携带不同荧光蛋白的retro-rAAV分别注射在上述不同的副嗅皮层,发现了副嗅球内投射神经元被共标,证明了小鼠副嗅球内投射神经元向心投射具有弥散的特征(1对多),与主嗅球的投射神经元类似。此外,我们还发现投射到不同皮层的副嗅球投射神经元被感染的数量有所不同,表明单个投射神经元的信息在向心传递过程中,可能会传递到不同皮层内不同数量的皮层神经元。这些结果为我们理解脊椎动物副嗅系统对外周环境中的气味信息的编码和解码机制提供了一定的神经环路基础。

    #Authors contributed equally to this work
  • Figure  1.  Mitral cell layer of AOB (MiA) projecting to BST, ACo, MeA, and PMCo

    A, B: BST was injected with rAAV2-retro-Ef1α-EYFP-WPRE-pA (in green) (A) and MiA was labeled after four weeks (B). C, D: ACo was injected with rAAV2-retro-Ef1α-mCherry-WPRE-pA (in red) (C) and MiA was labeled after four weeks (D). E, F: MeA was injected with rAAV2-retro-Ef1α-mCherry-WPRE-pA (in red) (E) and MiA was labeled after four weeks (F). G, H: PMCo was injected with rAAV2-retro-Ef1α-EYFP-WPRE-pA (in green) (G) and MiA was labeled after four weeks (H). I: No. of infected neurons in MiA per slice varied in different retrograde-labeled brain regions. ***: P<0.001. Scale bars: 200 μm. n=10, 6, 16, 11.

    Figure  2.  MiA projecting into BST and PMCo simultaneously

    A: Schematic. B: Injection site of rAAV2-retro-Ef1α-EYFP-WPRE-pA (in green) in BST. C: Injection site of rAAV2-retro-Ef1α-mCherry-WPRE-pA (in red) in PMCo. D–F: Two kinds of rAAV2-retro overlapped in MiA after four weeks (arrows indicate co-labeled neurons). G: Percentages of co-labeled neurons in MiA among all labeled neurons in BST and PMCo labeling, respectively. ***: P<0.001. Scale bars: 200 μm. n=3.

    Figure  3.  MiA projecting into ACo and PMCo simultaneously

    A: Schematic. B: Injection site of rAAV2-retro-Ef1α-EYFP-WPRE-pA (in green) in ACo. C: Injection site of rAAV2-retro-Ef1α-mCherry-WPRE-pA (in red) in PMCo. D–F: Two kinds of rAAV2-retro overlapped in MiA after four weeks (arrows indicate co-labeled neurons). G: Percentages of co-labeled neurons in MiA among all labeled neurons in ACo and PMCo labeling, respectively. ***: P<0.001. Scale bars: 200 μm. n=3.

    Figure  4.  MiA projecting into PMCo and MeA simultaneously

    A: Schematic. B: Injection site of rAAV2-retro-Ef1α-mCherry-WPRE-pA (in red) in MeA. C: Injection site of rAAV2-retro-Ef1α-EYFP-WPRE-pA (in green) in PMCo. D–F: Two kinds of rAAV2-retro overlapped in MiA after four weeks (arrows indicate co-labeled neurons). G: Percentages of co-labeled neurons in MiA among all labeled neurons from MeA and PMCo, respectively. ***: P<0.001. Scale bars: 200 μm. n=3.

    Figure  5.  MiA projecting into BST and MeA simultaneously

    A: Schematic. B: Injection site of rAAV2-retro-Ef1α-EYFP-WPRE-pA (in green) in BST. C: Injection site of rAAV2-retro-Ef1α-mCherry-WPRE-pA (in red) in MeA. D–F: Two kinds of rAAV2-retro overlapped in MiA after four weeks (arrows indicate co-labeled neurons). G: Percentages of co-labeled neurons in MiA among all labeled neurons from BST and MeA, respectively. ***: P<0.001. Scale bars: 200 μm. n=3.

    Figure  6.  MiA projecting into ACo and MeA simultaneously

    A: Schematic. B: Injection site of rAAV2-retro-Ef1α-EYFP-WPRE-pA (in green) in ACo. C: Injection site of rAAV2-retro-Ef1α-mCherry-WPRE-pA (in red) in MeA. D–F: Two kinds of rAAV2-retro overlapped in the MiA after four weeks (arrows indicate co-labeled neurons). G: Percentages of co-labeled neurons in MiA among all labeled neurons from ACo and MeA, respectively. ***: P<0.001. Scale bars: 200 μm. n=3.

    Figure  7.  Schematic of afferent projections in accessory olfactory system of mice

  • [1] Ackels T, Drose DR, Spehr M. 2016. In-depth physiological analysis of defined cell populations in acute tissue slices of the mouse vomeronasal organ. Journal of Visuallized Experiments, 115: e54517.
    [2] Breer H, Fleischer J, Strotmann J. 2006. The sense of smell: multiple olfactory subsystems. Cellular and Molecular Life Sciences, 63: 1465−1475. doi: 10.1007/s00018-006-6108-5
    [3] Doving KB, Trotier D. 1998. Structure and function of the vomeronasal organ. Journal of Experimental Biologyl, 201: 2913−2925.
    [4] Dulac C, Torello AT. 2003. Molecular detection of pheromone signals in mammals: from genes to behaviour. Nature Reviews Neuroscience, 4: 551−562. doi: 10.1038/nrn1140
    [5] Dulac C, Wagner S. 2006. Genetic analysis of brain circuits underlying pheromone signaling. Annual Review of Genetics, 40: 449−467. doi: 10.1146/annurev.genet.39.073003.093937
    [6] Ghosh S, Larson SD, Hefzi H, Marnoy Z, Cutforth T, Dokka K, Baldwin KK. 2011. Sensory maps in the olfactory cortex defined by long-range viral tracing of single neurons. Nature, 472: 217−220. doi: 10.1038/nature09945
    [7] Halpern M, Martinez-Marcos A. 2003. Structure and function of the vomeronasal system: an update. Progress in Neurobiology, 70(3): 245−318. doi: 10.1016/S0301-0082(03)00103-5
    [8] Holy TE. 2018. The accessory olfactory system: Innately specialized or microcosm of mammalian circuitry?. Annual review of neuroscience, 41: 501−525. doi: 10.1146/annurev-neuro-080317-061916
    [9] Kang N, Baum MJ, Cherry JA. 2009. A direct main olfactory bulb projection to the 'vomeronasal' amygdala in female mice selectively responds to volatile pheromones from males. The European Journal of Neuroscience, 29(3): 624−634. doi: 10.1111/j.1460-9568.2009.06638.x
    [10] Krieger J, Schmitt A, Lobel D, Gudermann T, Schultz G, Breer H, Boekhoff I. 1999. Selective activation of G protein subtypes in the vomeronasal organ upon stimulation with urine-derived compounds. The Journal of Biological Chemistry, 274(8): 4655−4662. doi: 10.1074/jbc.274.8.4655
    [11] Larriva-Sahd J. 2008. The accessory olfactory bulb in the adult rat: a cytological study of its cell types, neuropil, neuronal modules, and interactions with the main olfactory system. The Journal of Comparative Neurology, 510(3): 309−350. doi: 10.1002/cne.21790
    [12] Leinders-Zufall T, Brennan P, Widmayer P, S PC, Maul-Pavicic A, Jager M, Li XH, Breer H, Zufall F, Boehm T. 2004. MHC class I peptides as chemosensory signals in the vomeronasal organ. Science, 306(5698): 1033−1037. doi: 10.1126/science.1102818
    [13] Leinders-Zufall T, Lane AP, Puche AC, Ma W, Novotny MV, Shipley MT, Zufall F. 2000. Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature, 405: 792−796. doi: 10.1038/35015572
    [14] Marking S, Krosnowski K, Ogura T, Lin W. 2017. Dichotomous distribution of putative cholinergic interneurons in mouse accessory olfactory bulb. Frontiers in Neuroanatomy, 11: 10.
    [15] Miyamichi K, Amat F, Moussavi F, Wang C, Wickersham I, Wall NR, Taniguchi H, Tasic B, Huang ZJ, He Z, Callaway EM, Horowitz MA, Luo L. 2011. Cortical representations of olfactory input by trans-synaptic tracing. Nature, 472: 191−196. doi: 10.1038/nature09714
    [16] Mohedano-Moriano A, Pro-Sistiaga P, Ubeda-Banon I, Crespo C, Insausti R, Martinez-Marcos A. 2007. Segregated pathways to the vomeronasal amygdala: differential projections from the anterior and posterior divisions of the accessory olfactory bulb. The European Journal of Neuroscience, 25(7): 2065−2080. doi: 10.1111/j.1460-9568.2007.05472.x
    [17] Mohrhardt J, Nagel M, Fleck D, Ben-Shaul Y, Spehr M. 2018. Signal detection and coding in the accessory olfactory system. Chemical Senses, 43(9): 667−695. doi: 10.1093/chemse/bjy061
    [18] Moriya-Ito K, Endoh K, Fujiwara-Tsukamoto Y, Ichikawa M. 2013. Three-dimensional reconstruction of electron micrographs reveals intrabulbar circuit differences between accessory and main olfactory bulbs. Frontiers in Neuroanatomy, 7: 5.
    [19] Nagayama S, Enerva A, Fletcher ML, Masurkar AV, Igarashi KM, Mori K, Chen WR. 2010. Differential axonal projection of mitral and tufted cells in the mouse main olfactory system. Frontiers in Neural Circuits, 4: 120.
    [20] Perez-Gomez A, Bleymehl K, Stein B, Pyrski M, Birnbaumer L, Munger SD, Leinders-Zufall T, Zufall F, Chamero P. 2015. Innate predator odor aversion driven by parallel olfactory subsystems that converge in the ventromedial hypothalamus. Current Biology, 25(10): 1340−1346. doi: 10.1016/j.cub.2015.03.026
    [21] Riviere S, Challet L, Fluegge D, Spehr M, Rodriguez I. 2009. Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature, 459: 574−577. doi: 10.1038/nature08029
    [22] Sosulski DL, Bloom ML, Cutforth T, Axel R, Datta SR. 2011. Distinct representations of olfactory information in different cortical centres. Nature, 472: 213−216. doi: 10.1038/nature09868
    [23] Spehr M, Spehr J, Ukhanov K, Kelliher KR, Leinders-Zufall T, Zufall F. 2006. Parallel processing of social signals by the mammalian main and accessory olfactory systems. Cellular Molecular Life Sciences, 63: 1476−1484. doi: 10.1007/s00018-006-6109-4
    [24] Su CY, Menuz K, Carlson JR. 2009. Olfactory perception: receptors, cells, and circuits. Cell, 139: 45−59. doi: 10.1016/j.cell.2009.09.015
    [25] Takami S, Graziadei PP. 1991. Light microscopic Golgi study of mitral/tufted cells in the accessory olfactory bulb of the adult rat. The Journal of Comparative Neurology, 311(1): 65−83. doi: 10.1002/cne.903110106
    [26] Urban NN, Castro JB. 2005. Tuft calcium spikes in accessory olfactory bulb mitral cells. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 25(20): 5024−5028. doi: 10.1523/JNEUROSCI.0297-05.2005
    [27] Vargas-Barroso V, Ordaz-Sanchez B, Pena-Ortega F, Larriva-Sahd JA. 2015. Electrophysiological evidence for a direct link between the main and accessory olfactory bulbs in the adult rat. Frontiers in Neuroscience, 9: 518.
    [28] von Campenhausen H, Mori K. 2000. Convergence of segregated pheromonal pathways from the accessory olfactory bulb to the cortex in the mouse. The European Journal of Neuroscience, 12(1): 33−46. doi: 10.1046/j.1460-9568.2000.00879.x
    [29] Yokosuka M. 2012. Histological properties of the glomerular layer in the mouse accessory olfactory bulb. Experimental Animals, 61(1): 13−24. doi: 10.1538/expanim.61.13
    [30] Yoles-Frenkel M, Kahan A, Ben-Shaul Y. 2018. Temporal response properties of accessory olfactory bulb neurons: limitations and opportunities for decoding. The Journal of Neuroscience, 38(21): 4957−4976. doi: 10.1523/JNEUROSCI.2091-17.2018
    [31] Yonekura J, Yokoi M. 2008. Conditional genetic labeling of mitral cells of the mouse accessory olfactory bulb to visualize the organization of their apical dendritic tufts. Molecular and Cellular Neuroscience, 37(4): 708−718. doi: 10.1016/j.mcn.2007.12.016
    [32] Zhu X, Lin K, Liu Q, Yue X, Mi H, Huang X, He X, Wu R, Zheng D, Wei D, Jia L, Wang W, Manyande A, Wand J, Zhang Z, Xu F. 2020. Rabies virus pseudotyped with CVS-N2C glycoprotein as a powerful tool for retrograde neuronal network tracing. Neuroscience Bulletin, 36(3): 202−216. doi: 10.1007/s12264-019-00423-3
  • 加载中
图(7)
计量
  • 文章访问数:  3041
  • HTML全文浏览量:  902
  • PDF下载量:  208
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-18
  • 刊出日期:  2020-03-01

目录

    /

    返回文章
    返回