留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Comparative analysis of diverse toxins from a new pharmaceutical centipede, Scolopendra mojiangica

Zi-Chao Liu Jin-Yang Liang Xin-Qiang Lan Tao Li Jia-Rui Zhang Fang Zhao Geng Li Pei-Yi Chen Yun Zhang Wen-Hui Lee Feng Zhao

Zi-Chao Liu, Jin-Yang Liang, Xin-Qiang Lan, Tao Li, Jia-Rui Zhang, Fang Zhao, Geng Li, Pei-Yi Chen, Yun Zhang, Wen-Hui Lee, Feng Zhao. Comparative analysis of diverse toxins from a new pharmaceutical centipede, Scolopendra mojiangica. Zoological Research, 2020, 41(2): 138-147. doi: 10.24272/j.issn.2095-8137.2020.019
Citation: Zi-Chao Liu, Jin-Yang Liang, Xin-Qiang Lan, Tao Li, Jia-Rui Zhang, Fang Zhao, Geng Li, Pei-Yi Chen, Yun Zhang, Wen-Hui Lee, Feng Zhao. Comparative analysis of diverse toxins from a new pharmaceutical centipede, Scolopendra mojiangica. Zoological Research, 2020, 41(2): 138-147. doi: 10.24272/j.issn.2095-8137.2020.019

墨江蜈蚣(Scolopendra mojiangica)毒素多样性的比较分析研究

doi: 10.24272/j.issn.2095-8137.2020.019

Comparative analysis of diverse toxins from a new pharmaceutical centipede, Scolopendra mojiangica

Funds: This work was supported by grants from the Chinese National Natural Science Foundation (81860696, 31560596, 81373945, and 31360516), Yunnan Applied Basic Research Projects (2016FD076), Key Research Program of the Chinese Academy of Sciences (KJZD-EW-L03), "Yunling Scholar" Program, Yunnan Provincial Training Programs of Youth Leader in Academic and Technical Reserve Talent (2019HB058), and Puer University (2017XJKT12 & CXTD011)
More Information
  • 摘要:

    在我国传统中医药记载中,蜈蚣的药用历史有上千年。蜈蚣是一类最古老的有毒动物,其分泌的毒液是重要的捕食、防御的武器,含有大量生物及药理活性分子,极具药用价值。墨江蜈蚣(Scolopendra mojiangica)是一种较为常用的备选药材。本研究通过比较分析,揭示了墨江蜈蚣与药典收录药材—少棘蜈蚣(S. subspinipes mutilans)之间的毒素分子多样性及差异。通过ESI-MS/MS鉴定,并结合毒腺转录组数据分析,在墨江蜈蚣蛋白质组中鉴定了六千多种肽、246种蛋白质分子,其中毒素样蛋白、功能未知的毒素占五分之一。虽然少棘蜈蚣中,毒素蛋白占总蛋白的比例更高,但是通过转录组学比较分析发现,两种蜈蚣毒素转录本的组成非常相似。同时,墨江蜈蚣转录组中鉴定的毒素样蛋白数量是毒液蛋白质组中数量的10倍,由此我们可以推导出更多毒素样多肽的前体结构。墨江蜈蚣毒液的毒性实验发现,其粗毒同样具有很强的溶血活性及杀昆虫活性。我们的研究表明墨江蜈蚣的毒素样蛋白具有丰富的多样性,将为蜈蚣毒素样蛋白的药物开发和利用提供了新的基础。

    #Authors contributed equally to this work
  • Figure  1.  Proteomic and transcriptomic analyses of new pharmaceutical centipede

    A: Molecular phylogenetic analysis of centipede, S. mojiangica, by maximum likelihood based on COI genes. Red labels correspond to two centipedes in our study, and posterior probabilities are assigned to nodes. B: Workflow for proteomic and transcriptomic analyses of centipede, S. mojiangica. Venom was processed and subjected to SDS-PAGE followed by in-gel digestion. Samples were then analysed in a separate ESI-MS/MS assay. For transcriptomic analysis, venom glands (not venom) were used for high-throughput sequencing. Functional analysis was combined with proteomic and transcriptomic data.

    Figure  2.  Profiles of S. mojiangica proteome

    A: Cumulative distribution of protein peptide coverage. Horizontal axis shows protein peptide coverage, and vertical axis shows protein ratio. B: Pie chart of identified proteins from our S. mojiangica proteome. C: Comparison of toxin-like proteins determined by proteomic analysis among three centipedes: i.e., S. mojiangica, S. viridis (Gonzalez-Morales et al., 2014), and S. mutilans (Zhao et al., 2018a). D: Distribution of molecular weights of proteome proteins.

    Figure  3.  Identification of toxins from transcriptome of venom gland in centipedes

    A: Comparison of transcripts identified in venom glands from two centipedes, S. mojiangica and S. mutilans, with transcriptomic analysis. B: Expression of all transcripts in venom glands of S. mojiangica and S. mutilans. Read counts reflect quantification accuracy of differential expression by mapping reads to transcripts and read counting. C: Pie chart of venom toxin-like proteins/peptides identified in transcriptomes of S. mojiangica and S. mutilans. In total, 410 and 342 venom toxin-like proteins/peptides were identified from S. mojiangica and S. mutilans, respectively, using transcriptomic analysis.

    Figure  4.  Comparison of toxin-like molecules distributed in centipedes S. mojiangica and S. mutilans

    A: Distribution of identified toxin-like molecules in S. mojiangica and S. mutilans. Toxin-like transcripts (n=410) in S. mojiangica were divided into 34 categories. Blue dots represent transcripts of S. mutilans and red dots represent transcripts of S. mojiangica. B: Main components of toxin-like molecules expressed in S. mojiangica and S. mutilans. Transcriptomic analysis showed only four types of toxin-like molecules with differential gene expression between S. mojiangica and S. mutilans.

    Figure  5.  Insecticidal activity of crude centipede venom

    A: Insecticidal activity of crude centipede venom. B: Hemolytic activity of elution of crude centipede venom. Peaks 1, 3, 5, and 6 at concentrations of 1 mg/mL were incubated with human red blood cells for 30 min at 37 °C, and absorbance of supernatant was measured at 540 nm.

    Table  1.   Toxin-like proteins/peptides identified from venom proteome of S. mojiangica centipede

    Sequence IDGenBank accession No.Sequence descriptionCategoryPeptidesE-ValueMW (kD)Calc. pIFPKM
    ScoMo_singlet48841AT0003236Blarina toxin precursor (EC 3.4.21.-)Blarina toxin91.00E-3721.614.1592.54
    ScoMo_singlet50899AT0003766Mucrofibrase-5 precursor (EC 3.4.21.-)Mucrofibrase-5114.00E-1614.409.933 454.74
    ScoMo_singlet71394AT0002263Pseudechetoxin-like protein precursorPseudechetoxin2769.00E-4228.749.867 195.57
    ScoMo_contig2076gi|429840589K+ channel inhibitorChannel inhibitor6174.00E-16462.769.151.37
    ScoMo_singlet78309AT0000117Latisemin precursorLatisemin4122.00E-2220.897.960.00
    ScoMo_contig4762AT0003236Blarina toxin precursor (EC 3.4.21.-)Blarina toxin1081.00E-4428.586.515 173.32
    ScoMo_singlet45908AT0003741Thrombin-like enzyme contortrixobin (EC 3.4.21.-)Serine proteinase1091.00E-4144.945.081 685.57
    ScoMo_singlet67462AT0000120Pseudecin precursorPseudechetoxin665.00E-3223.718.9114 111.58
    ScoMo_singlet72573AT0000552Hopsarin-D (EC 3.4.21.6)Hopsarin-D931.00E-12185.156.53132.70
    ScoMo_singlet76606AT0000554Trocarin precursor (EC 3.4.21.6)Trocarin383.00E-13884.926.1760.34
    ScoMo_singlet25641AT0000552Hopsarin-D (EC 3.4.21.6)Hopsarin-D465.00E-2027.214.6184.53
    ScoMo_singlet69905AT0000554Trocarin precursor (EC 3.4.21.6)Trocarin144.00E-10740.695.281 245.366
    ScoMo_singlet57737AT0003404Zinc metalloproteinase fibrolase (EC 3.4.24.72)Metalloproteinase204.00E-1635.218.1348.71
    ScoMo_singlet8256AT0000762Alpha-latrocrustotoxinAlpha-latrocrustotoxin10050.486.79136.27
    ScoMo_singlet68890AT0000552Hopsarin-D (EC 3.4.21.6)Hopsarin-D135.00E-7542.037.88161.84
    ScoMo_singlet7846gi|392295725Omega-slptx-ssm2a neurotoxin precursorNeurotoxin118.00E-368.564.9316 647.01
    ScoMo_singlet55496gi|501293796Cathepsin LCathepsin L1801.00E-15537.306.352.83
    ScoMo_singlet39956AT0000554Trocarin precursor (EC 3.4.21.6)Trocarin124E-094.643.795.55
    MW: Molecular Weight; Calc. pI: The calculated isoelectric point (pI); FPKM: Fragments Per Kilobase of exon model per Million mapped fragments.
    下载: 导出CSV
  • [1] Chen K, Yu B. 1999. Certain progress of clinical research on Chinese integrative medicine. Chinese Medical Journal (Engl), 112(10): 934−937.
    [2] Chen M, Li J, Zhang F, Liu Z. 2014. Isolation and characterization of SsmTx-I, a Specific Kv2.1 blocker from the venom of the centipede Scolopendra Subspinipes Mutilans L. Koch. Journal of Peptide Science, 20(3): 159−164. doi: 10.1002/psc.2588
    [3] Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21(18): 3674−3676. doi: 10.1093/bioinformatics/bti610
    [4] Edgar RC. 2010. Quality measures for protein alignment benchmarks. Nucleic Acids Research, 38(7): 2145−2153. doi: 10.1093/nar/gkp1196
    [5] Edgecombe GD, Giribet G. 2007. Evolutionary biology of centipedes (Myriapoda: Chilopoda). Annual Review of Entomology, 52: 151−170. doi: 10.1146/annurev.ento.52.110405.091326
    [6] Gonzalez-Morales L, Pedraza-Escalona M, Diego-Garcia E, Restano-Cassulini R, Batista CV, Gutierrez Mdel C, Possani LD. 2014. Proteomic characterization of the venom and transcriptomic analysis of the venomous gland from the Mexican centipede Scolopendra viridis. Journal of Proteomics, 111: 224−237. doi: 10.1016/j.jprot.2014.04.033
    [7] Hakim MA, Yang S, Lai R. 2015. Centipede venoms and their components: resources for potential therapeutic applications. Toxins (Basel), 7(11): 4832−4851. doi: 10.3390/toxins7114832
    [8] Harvey AL. 2014. Toxins and drug discovery. Toxicon, 92: 193−200. doi: 10.1016/j.toxicon.2014.10.020
    [9] He QY, He QZ, Deng XC, Yao L, Meng E, Liu ZH, Liang SP. 2008. ATDB: a uni-database platform for animal toxins. Nucleic Acids Research, 36.
    [10] Hou H, Yan W, Du K, Ye Y, Cao Q, Ren W. 2013. Construction and expression of an antimicrobial peptide scolopin 1 from the centipede venoms of Scolopendra subspinipes mutilans in Escherichia coli using SUMO fusion partner. Protein Expression and Purification, 92(2): 230−234. doi: 10.1016/j.pep.2013.10.004
    [11] Jiang H, Wong WH. 2009. Statistical inferences for isoform expression in RNA-Seq. Bioinformatics, 25(8): 1026−1032. doi: 10.1093/bioinformatics/btp113
    [12] Kalia J, Milescu M, Salvatierra J, Wagner J, Klint JK, King GF, Olivera BM, Bosmans F. 2015. From foe to friend: using animal toxins to investigate ion channel function. Journal of Molecular Biology, 427(1): 158−175. doi: 10.1016/j.jmb.2014.07.027
    [13] King G. 2013. Venoms to drugs: translating venom peptides into therapeutics. Australian Biochemist, 44(3): 13−16.
    [14] King GF. 2011. Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opinion on Biological Therapy, 11(11): 1469−1484. doi: 10.1517/14712598.2011.621940
    [15] Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7): 1870−1874. doi: 10.1093/molbev/msw054
    [16] Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 10(3): R25. doi: 10.1186/gb-2009-10-3-r25
    [17] Liu ZC, Zhang R, Zhao F, Chen ZM, Liu HW, Wang YJ, Jiang P, Zhang Y, Wu Y, Ding JP, Lee WH, Zhang Y. 2012. Venomic and transcriptomic analysis of centipede Scolopendra subspinipes dehaani. Journal of Proteome Research, 11(12): 6197−6212. doi: 10.1021/pr300881d
    [18] Peng K, Kong Y, Zhai L, Wu X, Jia P, Liu J, Yu H. 2010. Two novel antimicrobial peptides from centipede venoms. Toxicon, 55(2-3): 274−279. doi: 10.1016/j.toxicon.2009.07.040
    [19] Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J. 2003. TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics, 19(5): 651−652. doi: 10.1093/bioinformatics/btg034
    [20] Rong M, Yang S, Wen B, Mo G, Kang D, Liu J, Lin Z, Jiang W, Li B, Du C, Yang S, Jiang H, Feng Q, Xu X, Wang J, Lai R. 2015. Peptidomics combined with cDNA library unravel the diversity of centipede venom. Journal of Proteomics, 114: 28−37. doi: 10.1016/j.jprot.2014.10.014
    [21] Savitski MM, Nielsen ML, Kjeldsen F, Zubarev RA. 2005. Proteomics-grade de novo sequencing approach. Journal of Proteome Research, 4(6): 2348−2354. doi: 10.1021/pr050288x
    [22] Smith JJ, Herzig V, King GF, Alewood PF. 2013. The insecticidal potential of venom peptides. Cellular and Molecular Life Sciences: CMLS, 70(19): 3665−3693. doi: 10.1007/s00018-013-1315-3
    [23] Trapnell C, Pachter L, Salzberg SL. 2009. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 25(9): 1105−1111. doi: 10.1093/bioinformatics/btp120
    [24] Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, Salzberg SL, Wold BJ, Pachter L. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnol, 28(5): 511−515. doi: 10.1038/nbt.1621
    [25] Undheim EA, Fry BG, King GF. 2015. Centipede venom: recent discoveries and current state of knowledge. Toxins (Basel), 7(3): 679−704. doi: 10.3390/toxins7030679
    [26] Undheim EA, Jenner RA, King GF. 2016. Centipede venoms as a source of drug leads. Expert Opinion on Drug Discovery, 11(12): 1139−1149. doi: 10.1080/17460441.2016.1235155
    [27] Undheim EA, King GF. 2011. On the venom system of centipedes (Chilopoda), a neglected group of venomous animals. Toxicon, 57(4): 512−524. doi: 10.1016/j.toxicon.2011.01.004
    [28] Wang K, Fang H, Ye M, Chen H, Zhu Y, Fang H. 1997. Investigation on the resources of medicinal centipedes and identification on their commodities. Journal of Chinese Medicinal Materials, 20(9): 450−452.
    [29] Yang S, Liu Z, Xiao Y, Li Y, Rong M, Liang S, Zhang Z, Yu H, King GF, Lai R. 2012. Chemical punch packed in venoms makes centipedes excellent predators. Molecular and Cellular Proteomics, 11(9): 640−650. doi: 10.1074/mcp.M112.018853
    [30] Yang S, Xiao Y, Kang D, Liu J, Li Y, Undheim EA, Klint JK, Rong M, Lai R, King GF. 2013. Discovery of a selective NaV1.7 inhibitor from centipede venom with analgesic efficacy exceeding morphine in rodent pain models. Proceedings of the Natlional Academy of Sciences of the Untied States of America, 110(43): 17534−17539. doi: 10.1073/pnas.1306285110
    [31] Yang S, Yang F, Wei N, Hong J, Li B, Luo L, Rong M, Yarov-Yarovoy V, Zheng J, Wang K, Lai R. 2015. A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1. Nature Communications, 6: 8297. doi: 10.1038/ncomms9297
    [32] Zhang Y. 2015. Why do we study animal toxins?. Zoological Research, 36(4): 183−222.
    [33] Zhao F, Guo X, Wang Y, Liu J, Lee WH, Zhang Y. 2014a. Drug target mining and analysis of the Chinese tree shrew for pharmacological testing. PLoS One, 9(8): e104191. doi: 10.1371/journal.pone.0104191
    [34] Zhao F, Lan X, Li T, Xiang Y, Zhao F, Zhang Y, Lee WH. 2018a. Proteotranscriptomic analysis and discovery of the profile and diversity of toxin-like proteins in centipede. Molecular and Cellular Proteomics, 17(4): 709−720. doi: 10.1074/mcp.RA117.000431
    [35] Zhao F, Lan XQ, Du Y, Chen PY, Zhao J, Zhao F, Lee WH, Zhang Y. 2018b. King cobra peptide OH-CATH30 as a potential candidate drug through clinic drug-resistant isolates. Zoological Research, 39(2): 87−96. doi: 10.24272/j.issn.2095-8137.2018.025
    [36] Zhao F, Yan C, Wang X, Yang Y, Wang G, Lee W, Xiang Y, Zhang Y. 2014b. Comprehensive transcriptome profiling and functional analysis of the frog (Bombina maxima) immune system. DNA Research, 21(1): 1−13. doi: 10.1093/dnares/dst035
  • ZR-2019-163 Supplementary Tables and Figures.zip
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  2738
  • HTML全文浏览量:  719
  • PDF下载量:  256
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-15
  • 刊出日期:  2020-03-01

目录

    /

    返回文章
    返回