Comparative analysis of diverse toxins from a new pharmaceutical centipede, Scolopendra mojiangica
-
摘要:
在我国传统中医药记载中,蜈蚣的药用历史有上千年。蜈蚣是一类最古老的有毒动物,其分泌的毒液是重要的捕食、防御的武器,含有大量生物及药理活性分子,极具药用价值。墨江蜈蚣(Scolopendra mojiangica)是一种较为常用的备选药材。本研究通过比较分析,揭示了墨江蜈蚣与药典收录药材—少棘蜈蚣(S. subspinipes mutilans)之间的毒素分子多样性及差异。通过ESI-MS/MS鉴定,并结合毒腺转录组数据分析,在墨江蜈蚣蛋白质组中鉴定了六千多种肽、246种蛋白质分子,其中毒素样蛋白、功能未知的毒素占五分之一。虽然少棘蜈蚣中,毒素蛋白占总蛋白的比例更高,但是通过转录组学比较分析发现,两种蜈蚣毒素转录本的组成非常相似。同时,墨江蜈蚣转录组中鉴定的毒素样蛋白数量是毒液蛋白质组中数量的10倍,由此我们可以推导出更多毒素样多肽的前体结构。墨江蜈蚣毒液的毒性实验发现,其粗毒同样具有很强的溶血活性及杀昆虫活性。我们的研究表明墨江蜈蚣的毒素样蛋白具有丰富的多样性,将为蜈蚣毒素样蛋白的药物开发和利用提供了新的基础。
-
关键词:
- 蜈蚣 /
- 毒素 /
- 药用价值 /
- 蛋白组-转录组关联分析
Abstract:As the oldest venomous animals, centipedes use their venom as a weapon to attack prey and for protection. Centipede venom, which contains many bioactive and pharmacologically active compounds, has been used for centuries in Chinese medicine, as shown by ancient records. Based on comparative analysis, we revealed the diversity of and differences in centipede toxin-like molecules between Scolopendra mojiangica, a substitute pharmaceutical material used in China, and S. subspinipes mutilans. More than 6 000 peptides isolated from the venom were identified by electrospray ionization-tandem mass spectrometry (ESI-MS/MS) and inferred from the transcriptome. As a result, in the proteome of S. mojiangica, 246 unique proteins were identified: one in five were toxin-like proteins or putative toxins with unknown function, accounting for a lower percentage of total proteins than that in S. mutilans. Transcriptome mining identified approximately 10 times more toxin-like proteins, which can characterize the precursor structures of mature toxin-like peptides. However, the constitution and quantity of the toxin transcripts in these two centipedes were similar. In toxicity assays, the crude venom showed strong insecticidal and hemolytic activity. These findings highlight the extensive diversity of toxin-like proteins in S. mojiangica and provide a new foundation for the medical-pharmaceutical use of centipede toxin-like proteins.
-
Key words:
- Centipede /
- Toxins /
- Pharmaceutical use /
- Proteotranscriptomic analysis
-
Figure 1. Proteomic and transcriptomic analyses of new pharmaceutical centipede
A: Molecular phylogenetic analysis of centipede, S. mojiangica, by maximum likelihood based on COI genes. Red labels correspond to two centipedes in our study, and posterior probabilities are assigned to nodes. B: Workflow for proteomic and transcriptomic analyses of centipede, S. mojiangica. Venom was processed and subjected to SDS-PAGE followed by in-gel digestion. Samples were then analysed in a separate ESI-MS/MS assay. For transcriptomic analysis, venom glands (not venom) were used for high-throughput sequencing. Functional analysis was combined with proteomic and transcriptomic data.
Figure 2. Profiles of S. mojiangica proteome
A: Cumulative distribution of protein peptide coverage. Horizontal axis shows protein peptide coverage, and vertical axis shows protein ratio. B: Pie chart of identified proteins from our S. mojiangica proteome. C: Comparison of toxin-like proteins determined by proteomic analysis among three centipedes: i.e., S. mojiangica, S. viridis (Gonzalez-Morales et al., 2014), and S. mutilans (Zhao et al., 2018a). D: Distribution of molecular weights of proteome proteins.
Figure 3. Identification of toxins from transcriptome of venom gland in centipedes
A: Comparison of transcripts identified in venom glands from two centipedes, S. mojiangica and S. mutilans, with transcriptomic analysis. B: Expression of all transcripts in venom glands of S. mojiangica and S. mutilans. Read counts reflect quantification accuracy of differential expression by mapping reads to transcripts and read counting. C: Pie chart of venom toxin-like proteins/peptides identified in transcriptomes of S. mojiangica and S. mutilans. In total, 410 and 342 venom toxin-like proteins/peptides were identified from S. mojiangica and S. mutilans, respectively, using transcriptomic analysis.
Figure 4. Comparison of toxin-like molecules distributed in centipedes S. mojiangica and S. mutilans
A: Distribution of identified toxin-like molecules in S. mojiangica and S. mutilans. Toxin-like transcripts (n=410) in S. mojiangica were divided into 34 categories. Blue dots represent transcripts of S. mutilans and red dots represent transcripts of S. mojiangica. B: Main components of toxin-like molecules expressed in S. mojiangica and S. mutilans. Transcriptomic analysis showed only four types of toxin-like molecules with differential gene expression between S. mojiangica and S. mutilans.
Figure 5. Insecticidal activity of crude centipede venom
A: Insecticidal activity of crude centipede venom. B: Hemolytic activity of elution of crude centipede venom. Peaks 1, 3, 5, and 6 at concentrations of 1 mg/mL were incubated with human red blood cells for 30 min at 37 °C, and absorbance of supernatant was measured at 540 nm.
Table 1. Toxin-like proteins/peptides identified from venom proteome of S. mojiangica centipede
Sequence ID GenBank accession No. Sequence description Category Peptides E-Value MW (kD) Calc. pI FPKM ScoMo_singlet48841 AT0003236 Blarina toxin precursor (EC 3.4.21.-) Blarina toxin 9 1.00E-37 21.61 4.15 92.54 ScoMo_singlet50899 AT0003766 Mucrofibrase-5 precursor (EC 3.4.21.-) Mucrofibrase-5 11 4.00E-16 14.40 9.93 3 454.74 ScoMo_singlet71394 AT0002263 Pseudechetoxin-like protein precursor Pseudechetoxin 276 9.00E-42 28.74 9.86 7 195.57 ScoMo_contig2076 gi|429840589 K+ channel inhibitor Channel inhibitor 617 4.00E-164 62.76 9.15 1.37 ScoMo_singlet78309 AT0000117 Latisemin precursor Latisemin 412 2.00E-22 20.89 7.96 0.00 ScoMo_contig4762 AT0003236 Blarina toxin precursor (EC 3.4.21.-) Blarina toxin 108 1.00E-44 28.58 6.5 15 173.32 ScoMo_singlet45908 AT0003741 Thrombin-like enzyme contortrixobin (EC 3.4.21.-) Serine proteinase 109 1.00E-41 44.94 5.08 1 685.57 ScoMo_singlet67462 AT0000120 Pseudecin precursor Pseudechetoxin 66 5.00E-32 23.71 8.91 14 111.58 ScoMo_singlet72573 AT0000552 Hopsarin-D (EC 3.4.21.6) Hopsarin-D 93 1.00E-121 85.15 6.53 132.70 ScoMo_singlet76606 AT0000554 Trocarin precursor (EC 3.4.21.6) Trocarin 38 3.00E-138 84.92 6.17 60.34 ScoMo_singlet25641 AT0000552 Hopsarin-D (EC 3.4.21.6) Hopsarin-D 46 5.00E-20 27.21 4.6 184.53 ScoMo_singlet69905 AT0000554 Trocarin precursor (EC 3.4.21.6) Trocarin 14 4.00E-107 40.69 5.28 1 245.366 ScoMo_singlet57737 AT0003404 Zinc metalloproteinase fibrolase (EC 3.4.24.72) Metalloproteinase 20 4.00E-16 35.21 8.13 48.71 ScoMo_singlet8256 AT0000762 Alpha-latrocrustotoxin Alpha-latrocrustotoxin 10 0 50.48 6.79 136.27 ScoMo_singlet68890 AT0000552 Hopsarin-D (EC 3.4.21.6) Hopsarin-D 13 5.00E-75 42.03 7.88 161.84 ScoMo_singlet7846 gi|392295725 Omega-slptx-ssm2a neurotoxin precursor Neurotoxin 11 8.00E-36 8.56 4.93 16 647.01 ScoMo_singlet55496 gi|501293796 Cathepsin L Cathepsin L 180 1.00E-155 37.30 6.35 2.83 ScoMo_singlet39956 AT0000554 Trocarin precursor (EC 3.4.21.6) Trocarin 12 4E-09 4.64 3.79 5.55 MW: Molecular Weight; Calc. pI: The calculated isoelectric point (pI); FPKM: Fragments Per Kilobase of exon model per Million mapped fragments. -
[1] Chen K, Yu B. 1999. Certain progress of clinical research on Chinese integrative medicine. Chinese Medical Journal (Engl), 112(10): 934−937. [2] Chen M, Li J, Zhang F, Liu Z. 2014. Isolation and characterization of SsmTx-I, a Specific Kv2.1 blocker from the venom of the centipede Scolopendra Subspinipes Mutilans L. Koch. Journal of Peptide Science, 20(3): 159−164. doi: 10.1002/psc.2588 [3] Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21(18): 3674−3676. doi: 10.1093/bioinformatics/bti610 [4] Edgar RC. 2010. Quality measures for protein alignment benchmarks. Nucleic Acids Research, 38(7): 2145−2153. doi: 10.1093/nar/gkp1196 [5] Edgecombe GD, Giribet G. 2007. Evolutionary biology of centipedes (Myriapoda: Chilopoda). Annual Review of Entomology, 52: 151−170. doi: 10.1146/annurev.ento.52.110405.091326 [6] Gonzalez-Morales L, Pedraza-Escalona M, Diego-Garcia E, Restano-Cassulini R, Batista CV, Gutierrez Mdel C, Possani LD. 2014. Proteomic characterization of the venom and transcriptomic analysis of the venomous gland from the Mexican centipede Scolopendra viridis. Journal of Proteomics, 111: 224−237. doi: 10.1016/j.jprot.2014.04.033 [7] Hakim MA, Yang S, Lai R. 2015. Centipede venoms and their components: resources for potential therapeutic applications. Toxins (Basel), 7(11): 4832−4851. doi: 10.3390/toxins7114832 [8] Harvey AL. 2014. Toxins and drug discovery. Toxicon, 92: 193−200. doi: 10.1016/j.toxicon.2014.10.020 [9] He QY, He QZ, Deng XC, Yao L, Meng E, Liu ZH, Liang SP. 2008. ATDB: a uni-database platform for animal toxins. Nucleic Acids Research, 36. [10] Hou H, Yan W, Du K, Ye Y, Cao Q, Ren W. 2013. Construction and expression of an antimicrobial peptide scolopin 1 from the centipede venoms of Scolopendra subspinipes mutilans in Escherichia coli using SUMO fusion partner. Protein Expression and Purification, 92(2): 230−234. doi: 10.1016/j.pep.2013.10.004 [11] Jiang H, Wong WH. 2009. Statistical inferences for isoform expression in RNA-Seq. Bioinformatics, 25(8): 1026−1032. doi: 10.1093/bioinformatics/btp113 [12] Kalia J, Milescu M, Salvatierra J, Wagner J, Klint JK, King GF, Olivera BM, Bosmans F. 2015. From foe to friend: using animal toxins to investigate ion channel function. Journal of Molecular Biology, 427(1): 158−175. doi: 10.1016/j.jmb.2014.07.027 [13] King G. 2013. Venoms to drugs: translating venom peptides into therapeutics. Australian Biochemist, 44(3): 13−16. [14] King GF. 2011. Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opinion on Biological Therapy, 11(11): 1469−1484. doi: 10.1517/14712598.2011.621940 [15] Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7): 1870−1874. doi: 10.1093/molbev/msw054 [16] Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 10(3): R25. doi: 10.1186/gb-2009-10-3-r25 [17] Liu ZC, Zhang R, Zhao F, Chen ZM, Liu HW, Wang YJ, Jiang P, Zhang Y, Wu Y, Ding JP, Lee WH, Zhang Y. 2012. Venomic and transcriptomic analysis of centipede Scolopendra subspinipes dehaani. Journal of Proteome Research, 11(12): 6197−6212. doi: 10.1021/pr300881d [18] Peng K, Kong Y, Zhai L, Wu X, Jia P, Liu J, Yu H. 2010. Two novel antimicrobial peptides from centipede venoms. Toxicon, 55(2-3): 274−279. doi: 10.1016/j.toxicon.2009.07.040 [19] Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J. 2003. TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics, 19(5): 651−652. doi: 10.1093/bioinformatics/btg034 [20] Rong M, Yang S, Wen B, Mo G, Kang D, Liu J, Lin Z, Jiang W, Li B, Du C, Yang S, Jiang H, Feng Q, Xu X, Wang J, Lai R. 2015. Peptidomics combined with cDNA library unravel the diversity of centipede venom. Journal of Proteomics, 114: 28−37. doi: 10.1016/j.jprot.2014.10.014 [21] Savitski MM, Nielsen ML, Kjeldsen F, Zubarev RA. 2005. Proteomics-grade de novo sequencing approach. Journal of Proteome Research, 4(6): 2348−2354. doi: 10.1021/pr050288x [22] Smith JJ, Herzig V, King GF, Alewood PF. 2013. The insecticidal potential of venom peptides. Cellular and Molecular Life Sciences: CMLS, 70(19): 3665−3693. doi: 10.1007/s00018-013-1315-3 [23] Trapnell C, Pachter L, Salzberg SL. 2009. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 25(9): 1105−1111. doi: 10.1093/bioinformatics/btp120 [24] Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, Salzberg SL, Wold BJ, Pachter L. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnol, 28(5): 511−515. doi: 10.1038/nbt.1621 [25] Undheim EA, Fry BG, King GF. 2015. Centipede venom: recent discoveries and current state of knowledge. Toxins (Basel), 7(3): 679−704. doi: 10.3390/toxins7030679 [26] Undheim EA, Jenner RA, King GF. 2016. Centipede venoms as a source of drug leads. Expert Opinion on Drug Discovery, 11(12): 1139−1149. doi: 10.1080/17460441.2016.1235155 [27] Undheim EA, King GF. 2011. On the venom system of centipedes (Chilopoda), a neglected group of venomous animals. Toxicon, 57(4): 512−524. doi: 10.1016/j.toxicon.2011.01.004 [28] Wang K, Fang H, Ye M, Chen H, Zhu Y, Fang H. 1997. Investigation on the resources of medicinal centipedes and identification on their commodities. Journal of Chinese Medicinal Materials, 20(9): 450−452. [29] Yang S, Liu Z, Xiao Y, Li Y, Rong M, Liang S, Zhang Z, Yu H, King GF, Lai R. 2012. Chemical punch packed in venoms makes centipedes excellent predators. Molecular and Cellular Proteomics, 11(9): 640−650. doi: 10.1074/mcp.M112.018853 [30] Yang S, Xiao Y, Kang D, Liu J, Li Y, Undheim EA, Klint JK, Rong M, Lai R, King GF. 2013. Discovery of a selective NaV1.7 inhibitor from centipede venom with analgesic efficacy exceeding morphine in rodent pain models. Proceedings of the Natlional Academy of Sciences of the Untied States of America, 110(43): 17534−17539. doi: 10.1073/pnas.1306285110 [31] Yang S, Yang F, Wei N, Hong J, Li B, Luo L, Rong M, Yarov-Yarovoy V, Zheng J, Wang K, Lai R. 2015. A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1. Nature Communications, 6: 8297. doi: 10.1038/ncomms9297 [32] Zhang Y. 2015. Why do we study animal toxins?. Zoological Research, 36(4): 183−222. [33] Zhao F, Guo X, Wang Y, Liu J, Lee WH, Zhang Y. 2014a. Drug target mining and analysis of the Chinese tree shrew for pharmacological testing. PLoS One, 9(8): e104191. doi: 10.1371/journal.pone.0104191 [34] Zhao F, Lan X, Li T, Xiang Y, Zhao F, Zhang Y, Lee WH. 2018a. Proteotranscriptomic analysis and discovery of the profile and diversity of toxin-like proteins in centipede. Molecular and Cellular Proteomics, 17(4): 709−720. doi: 10.1074/mcp.RA117.000431 [35] Zhao F, Lan XQ, Du Y, Chen PY, Zhao J, Zhao F, Lee WH, Zhang Y. 2018b. King cobra peptide OH-CATH30 as a potential candidate drug through clinic drug-resistant isolates. Zoological Research, 39(2): 87−96. doi: 10.24272/j.issn.2095-8137.2018.025 [36] Zhao F, Yan C, Wang X, Yang Y, Wang G, Lee W, Xiang Y, Zhang Y. 2014b. Comprehensive transcriptome profiling and functional analysis of the frog (Bombina maxima) immune system. DNA Research, 21(1): 1−13. doi: 10.1093/dnares/dst035 -
ZR-2019-163 Supplementary Tables and Figures.zip
-