留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Evolution of neurotransmitter gamma-aminobutyric acid, glutamate and their receptors

Zhiheng GOU Xiao WANG Wen WANG

Zhiheng GOU, Xiao WANG, Wen WANG. Evolution of neurotransmitter gamma-aminobutyric acid, glutamate and their receptors. Zoological Research, 2012, 33(E5-6): 75-81. doi: 10.3724/SP.J.1141.2012.E05-06E75
Citation: Zhiheng GOU, Xiao WANG, Wen WANG. Evolution of neurotransmitter gamma-aminobutyric acid, glutamate and their receptors. Zoological Research, 2012, 33(E5-6): 75-81. doi: 10.3724/SP.J.1141.2012.E05-06E75

Evolution of neurotransmitter gamma-aminobutyric acid, glutamate and their receptors

doi: 10.3724/SP.J.1141.2012.E05-06E75
详细信息
    通讯作者:

    Wen WANG

Evolution of neurotransmitter gamma-aminobutyric acid, glutamate and their receptors

  • 摘要: Gamma-aminobutyric acid (GABA) and glutamate are two important amino acid neurotransmitters widely present in the nervous systems of mammals, insects, round worm, and platyhelminths, while their receptors are quite diversified across different animal phyla. However, the evolutionary mechanisms between the two conserved neurotransmitters and their diversified receptors remain elusive, and antagonistic interactions between GABA and glutamate signal transduction systems, in particular, have begun to attract significant attention. In this review, we summarize the extant results on the origin and evolution of GABA and glutamate, as well as their receptors, and analyze possible evolutionary processes and phylogenetic relationships of various GABAs and glutamate receptors. We further discuss the evolutionary history of Excitatory/Neutral Amino Acid Transporter (EAAT), a transport protein, which plays an important role in the GABA-glutamate “yin and yang” balanced regulation. Finally, based on current advances, we propose several potential directions of future research.
  • [1] Bargmann CI. 1998. Neurobiology of the Caenorhabditis elegans genome. Science, 282(5396): 2028-2033.
    [2] Barnard E, Skolnick P, Olsen R, Mohler H, Sieghart W, Biggio G, Braestrup C, Bateson A, Langer S. 1998. International Union of Pharmacology. XV. Subtypes of γ-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. Pharmacol Rev, 50(2): 291-314.
    [3] Beg AA, Jorgensen EM. 2003. EXP-1 is an excitatory GABA-gated cation channel. Nat Neurosci, 6(11): 1145-1152.
    [4] Bouché N, Fromm H. 2004. GABA in plants: just a metabolite? Trends Plant Sci, 9(3): 110-115.
    [5] Brockie PJ, Madsen DM, Zheng Y, Mellem J, Maricq AV. 2001. Differential expression of glutamate receptor subunits in the nervous system of Caenorhabditis elegans and their regulation by the homeodomain protein UNC-42. J Neurosci, 21(5): 1510-1522.
    [6] Cao JH, Huang SL, Qian J, Huang JL, Jin LX, Su Z, Yang J, Liu JF. 2009. Evolution of the class C GPCR Venus flytrap modules involved positive selected functional divergence. BMC Evol Biol, 9(1): 67.
    [7] Chang Y, Wang R, Barot S, Weiss DS. 1996. Stoichiometry of a recombinant GABAA receptor. J Neurosci, 16(17): 5415-5424.
    [8] Chebib M, Johnston GAR. 1999. The ‘ABC’of GABA receptors: a brief review. Clin Exp Pharmacol Physiol, 26(11): 937-940.
    [9] Chiu J, DeSalle R, Lam HM, Meisel L, Coruzzi G. 1999. Molecular evolution of glutamate receptors: a primitive signaling mechanism that existed before plants and animals diverged. Mol Biol Evol, 16(6): 826-838.
    [10] Cully DF, Paress PS, Liu KK, Schaeffer JM, Arena JP. 1996. Identification of a Drosophila melanogaster glutamate-gated chloride channel sensitive to the antiparasitic agent avermectin. J Biol Chem, 271(33): 20187-20191.
    [11] Darlison MG, Pahal I, Thode C. 2005. Consequences of the evolution of the GABAA receptor gene family. Cell Mol Neurobiol, 25(3): 607-624.
    [12] Davis RE, Stretton AOW. 1995. Biochemistry and Molecular Biology of Parasites. Sandiego: Academic Press Inc.
    [13] DeFeudis FV. 1975. Amino acids as central neurotransmitters. Annu Rev Pharmacol, 15(1): 105-130.
    [14] Devaud JM, Clouet-Redt C, Bockaert J, Grau Y, Parmentier ML. 2008. Widespread brain distribution of the Drosophila metabotropic glutamate receptor. Neuroreport, 19(3): 367-371.
    [15] Fiorillo CD, Williams JT. 1998. Glutamate mediates an inhibitory postsynaptic potential in dopamine neurons. Nature, 394(6688): 78-82.
    [16] Gassmann M, Bettler B. 2012. Regulation of neuronal GABAB receptor functions by subunit composition. Nat Rev Neurosci, 13(6): 380-394.
    [17] Gerschenfeld HM. 1973. Chemical transmission in invertebrate central nervous systems and neuromuscular junctions. Physiol Rev, 53(1): 1-119.
    [18] Gesemann M, Lesslauer A, Maurer CM, Schönthaler HB, Neuhauss SCF. 2010. Phylogenetic analysis of the vertebrate Excitatory/Neutral Amino Acid Transporter (SLC1/EAAT) family reveals lineage specific subfamilies. BMC Evol Biol, 10(1): 117.
    [19] Gordon JA. 2010. Testing the glutamate hypothesis of schizophrenia. Nat Neurosci, 13(1): 2-4.
    [20] Héja L, Barabás P, Nyitrai G, Kékesi KA, Lasztóczi B, Toke O, Tárkányi G, Madsen K, Schousboe A, Dobolyi á, Palkovits M, Kardos J. 2009. Glutamate uptake triggers transporter-mediated GABA release from astrocytes. PLoS ONE, 4(9): e7153.
    [21] Hosie A, Sattelle D, Aronstein K. 1997. Molecular biology of insect neuronal GABA receptors. Trends Neurosci, 20(12): 578-583.
    [22] Kass-Simon G, Scappaticci A Jr. 2004. Glutamatergic and GABAnergic control in the tentacle effector systems of Hydra vulgaris. Hydrobiologia, 2004, 178(530-531): 67-71.
    [23] Kass-Simon G, Pannaccione A, Pierobon P. 2003. GABA and glutamate receptors are involved in modulating pacemaker activity in hydra. Comp Biochem Physiol A Mol Integr Physiol, 136(2): 329-342.
    [24] Kehoe J, Marder E. 1976. Identification and effects of neural transmitters in invertebrates. Annu Rev Pharmacol Toxicol, 16(1): 245-268.
    [25] Lü BZ, Tian Y. 1991. Receptor Introduction. Beijng: Beijing Science Press: 923-930. (in Chinese)
    [26] Martínez-Delgado G, Estrada-Mondragón A, Miledi R, Martínez-Torres A. 2010. An update on GABAρ receptors. Curr Neuropharmacol, 8(4): 422-433.
    [27] McIntire SL, Jorgensen E, Kaplan J, Horvitz HR. 1993. The GABAergic nervous system of Caenorhabditis elegans. Nature, 364(6435): 337-341.
    [28] Mezler M, Müller T, Raming K. 2001. Cloning and functional expression of GABAB receptors from Drosophila. Eur J Neurosci, 13(3): 477-486.
    [29] Müller WE. 1998. Origin of Metazoa: sponges as living fossils. Naturwissenschaften, 85(1): 11-25.
    [30] Nakanishi S. 1992. Molecular diversity of glutamate receptors and implications for brain function. Science, 258(5082): 597-603.
    [31] Ortells MO, Lunt GG. 1995. Evolutionary history of the ligand-gated ion-channel superfamily of receptors. Trends Neurosci, 18(3): 121-127.
    [32] Perovic S, Krasko A, Prokic I, Müller IM, Müller WEG. 1999. Origin of neuronal-like receptors in Metazoa: cloning of a metabotropic glutamate/GABA-like receptor from the marine sponge Geodia cydonium. Cell Tissue Res, 296(2): 395-404.
    [33] Ribeiro P, El-Shehabi F, Patocka N. 2005. Classical transmitters and their receptors in flatworms. Parasitology, 131(S1): S19-S40.
    [34] Ryan TJ, Grant SGN. 2009. The origin and evolution of synapses. Nat Rev Neurosci, 10(10): 701-712.
    [35] Schuske K, Beg AA, Jorgensen EM. 2004. The GABA nervous system in C. elegans. Trends Neurosci, 27(7): 407-414.
    [36] Segerberg MA, Stretton A. 1993. Actions of cholinergic drugs in the nematode Ascaris suum. Complex pharmacology of muscle and motorneurons. J Gen Physiol, 101(2): 271-296.
    [37] Shimada S, Cutting G, Uhl G. 1992. gamma-Aminobutyric acid A or C receptor? gamma-Aminobutyric acid rho 1 receptor RNA induces bicuculline-, barbiturate-, and benzodiazepine-insensitive gamma-aminobutyric acid responses in Xenopus oocytes. Mol Pharmacol, 41(4): 683-687.
    [38] Swensen AM, Golowasch J, Christie AE, Coleman MJ, Nusbaum MP, Marder E. 2000. GABA and responses to GABA in the stomatogastric
    [39] ganglion of the crab Cancer borealis. J Exp Biol, 203(14): 2075-2092.
    [40] Tretter V, Ehya N, Fuchs K, Sieghart W. 1997. Stoichiometry and assembly of a recombinant GABAA receptor subtype. J Neurosci, 17(8): 2728-2737.
    [41] Tsang SY, Ng SK, Xu Z, Xue H. 2007. The evolution of GABAA receptor-like genes. Mol Biol Evol, 24(2): 599-610.
    [42] Vassilatis DK, Elliston KO, Paress PS, Hamelin M, Arena JP, Schaeffer JM, Van der Ploeg LHT, Cully DF. 1997. Evolutionary relationship of the ligand-gated ion channels and the avermectin-sensitive, glutamate-gated chloride channels. J Mol Evol, 44(5): 501-508.
    [43] Verma P, Kumar D, Tandan S. 2010. Effects of amino acid neurotransmitters on spontaneous muscular activity of the rumen amphistome, Gastrothylax crumenifer. J Helminthol, 83(4): 385-389.
    [44] White JH, Wise A, Main MJ, Green A, Fraser NJ, Disney GH, Barnes AA, Emson P, Foord SM, Marshall FH. 1998. Heterodimerization is required for the formation of a functional GABAB receptor. Nature, 396(6712): 679-682.
    [45] Wilke K, Gaul R, Klauck SM, Poustka A. 1997. A gene in human chromosome band Xq28 (GABRE) defines a putative new subunit class of the GABAA neurotransmitter receptor. Genomics, 45(1): 1-10.
    [46] Xie YF, Tang JS, Jia H. 2003. The roles of different types of glutamate receptors involved in the mediation of nucleus submedius (Sm) glutamate-evoked antinociception in the rat. Brain Res, 988(1-2): 146-153.
    [47] Yano S, Tokumitsu H, Soderling TR. 1998. Calcium promotes cell survival through CaM-K kinase activation of the protein-kinase-B pathway. Nature, 396(6711): 584-587.
    [48] Yates DM, Portillo V, Wolstenholme AJ. 2003. The avermectin receptors of Haemonchus contortus and Caenorhabditis elegans. Int J Parasitol, 33(11): 1183-1193.
  • [1] Yang Yang, Li-Na Wu, Jing-Fang Chen, Xi Wu, Jun-Hong Xia, Zi-Ning Meng, Xiao-Chun Liu, Hao-Ran Lin.  Whole-genome sequencing of leopard coral grouper (Plectropomus leopardus) and exploration of regulation mechanism of skin color and adaptive evolution, Zoological Research. doi: 10.24272/j.issn.2095-8137.2020.038
    [2] Li-Na LIU, Cheng-Ye WANG.  Complete mitochondrial genome of yellow meal worm(Tenebrio molitor), Zoological Research. doi: 10.13918/j.issn.2095-8137.2014.6.537
    [3] LI Yao, DAI Jie-Jie, SUN Xiao-Mei, XIA Xue-Shan.  Progress in studies on HCV receptor of Tupaia as a potential hepatitis C animal model, Zoological Research. doi: 10.3724/SP.J.1141.2011.01097
    [4] YUE Gen-Hua , *, Balazs Kovacs, Laszlo Orban, *A New Problem with Cross-Species Amplification of Microsatellites: Generation of Non-Homologous Products, Zoological Research. doi: 10.3724/SP.J.1141.2010.02131
    [5] ZHANG Yan-Qiong, WEN Jian-Fan.  miRNA System in Unicellular Eukaryotes and Its Evolutionary Implications, Zoological Research. doi: 10.3724/SP.J.1141. 2010.01039
    [6] WEI Yun-hu, ZHANG Yu-jun, CHEN Yuan, MAO Bing-yu.  Expansion of the Actin Gene Family in Amphioxus, Zoological Research. doi: 10.3724/SP.J.1141.2009.05473
    [7] RAN Xue-qin, LIN Jian-bin, DU Zhi-yong, QING Cheng, WANG Jia-fu.  Diversity of Bmp15 and Gdf9 Genes in White Goat of Guizhou Province and Evolution of the Encoded Proteins, Zoological Research. doi: 10.3724/SP.J.1141.2009.06593
    [8] SUN Gui-ling, JIANG Yong-hai, WEN Jian-fan.  Evolution of Metabolic Pathways, Zoological Research. doi: 10.3724/SP.J.1141.2008.04459
    [9] LI Hong-bin, HAN Hui-li, MA Wen-pei, DONG Zhi-fang, XU Lin.  Enhancement of GABAA Receptor-Mediated Inhibitory Postsynaptic Currents Induced by “Partial Oxygen-Glucose Deprivation”, Zoological Research.
    [10] ZHU Jun-quan, YANG Wan-xi.  Spermatozoon Ultrastructure of Scapharca subcrenata and Barbatia virescens and Its Implications for Evolutionary Relationship in Arcidae, Zoological Research.
    [11] FANG Yong-qiang, WENG You-zhu, Liu Li-li, FANG Qi, DAI Yan-yu.  Mechanism of 5-HT and GnRH Physiological Action in the Ovary of Crassostrea gigas:Orientation of Double Staining and Immunocytochemistry, Zoological Research.
    [12] LI Jing-Jing, ZHANG Ya-Ping.  The Genetics and Evolution of the House Mice, Zoological Research.
    [13] WANG Yu-Shan, WANG De-Hua, WANG Zu-Wang.  The Progress on The Theory of Long-Term Energy Budget in Animals, Zoological Research.
    [14] CHEN Yin-rui, YANG Jun-xing, Boris SKET, Gregor ALJANCIC.  A New Blind Cave Loach of Paracobitis With Comment on Its Characters Evolution, Zoological Research.
    [15] HUANG Jing-fei, LIU Ci-quan.  The Research on The Relationship Between protein Structural Fractals and Evolution, Zoological Research.
    [16] ZHU Shi-mo, HUANG Fu-sheng.  Studies on The Geographical Distribution and Evolution of Fossil Termites, Zoological Research.
    [17] ZHANG Ya-ping.  Genetic Variability and Conservation Relevance of The Sun Bear As Revealed by DNA Sequences, Zoological Research.
    [18] CAI Jing-xia, XU Lin, HU Xin-tian, MA Yuan-ye, SU Wei, XIAO Kun-yuan.  The Relation Between Evolution of Spatial working Memory Function and of Morphology of The Dorsolateral Prefrontal Cortex Among The Rhesus Monkey,Slow Loris and Tree Shrew, Zoological Research.
    [19] YANG Jun-xing.  Origin and Evolution of some Biological Characters of Anabarilius grahami As Referred To Geological Development of Fuxian Lake, Zoological Research.
    [20] WANG Xian-zhi, WANG Gui-yun, MA Qing-hui, LIU Zhi-fen, LIN Yu-xiang, WANG Xiao-fan.  Observation of karyological in Three Species of Buccinidae (Mollusca:Neogastropada), Zoological Research.
  • 加载中
计量
  • 文章访问数:  1989
  • HTML全文浏览量:  30
  • PDF下载量:  2699
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-20
  • 修回日期:  2012-11-20
  • 刊出日期:  2012-12-08

Evolution of neurotransmitter gamma-aminobutyric acid, glutamate and their receptors

doi: 10.3724/SP.J.1141.2012.E05-06E75
    通讯作者: Wen WANG

摘要: Gamma-aminobutyric acid (GABA) and glutamate are two important amino acid neurotransmitters widely present in the nervous systems of mammals, insects, round worm, and platyhelminths, while their receptors are quite diversified across different animal phyla. However, the evolutionary mechanisms between the two conserved neurotransmitters and their diversified receptors remain elusive, and antagonistic interactions between GABA and glutamate signal transduction systems, in particular, have begun to attract significant attention. In this review, we summarize the extant results on the origin and evolution of GABA and glutamate, as well as their receptors, and analyze possible evolutionary processes and phylogenetic relationships of various GABAs and glutamate receptors. We further discuss the evolutionary history of Excitatory/Neutral Amino Acid Transporter (EAAT), a transport protein, which plays an important role in the GABA-glutamate “yin and yang” balanced regulation. Finally, based on current advances, we propose several potential directions of future research.

English Abstract

Zhiheng GOU, Xiao WANG, Wen WANG. Evolution of neurotransmitter gamma-aminobutyric acid, glutamate and their receptors[J]. 动物学研究, 2012, 33(E5-6): 75-81. doi: 10.3724/SP.J.1141.2012.E05-06E75
引用本文: Zhiheng GOU, Xiao WANG, Wen WANG. Evolution of neurotransmitter gamma-aminobutyric acid, glutamate and their receptors[J]. 动物学研究, 2012, 33(E5-6): 75-81. doi: 10.3724/SP.J.1141.2012.E05-06E75
Zhiheng GOU, Xiao WANG, Wen WANG. Evolution of neurotransmitter gamma-aminobutyric acid, glutamate and their receptors. Zoological Research, 2012, 33(E5-6): 75-81. doi: 10.3724/SP.J.1141.2012.E05-06E75
Citation: Zhiheng GOU, Xiao WANG, Wen WANG. Evolution of neurotransmitter gamma-aminobutyric acid, glutamate and their receptors. Zoological Research, 2012, 33(E5-6): 75-81. doi: 10.3724/SP.J.1141.2012.E05-06E75
参考文献 (48)

目录

    /

    返回文章
    返回