留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Peak identification for ChIP-seq data with no controls

Yanfeng ZHANG Bing SU

Yanfeng ZHANG, Bing SU. Peak identification for ChIP-seq data with no controls. Zoological Research, 2012, 33(E5-6): 121-128. doi: 10.3724/SP.J.1141.2012.E05-06E121
Citation: Yanfeng ZHANG, Bing SU. Peak identification for ChIP-seq data with no controls. Zoological Research, 2012, 33(E5-6): 121-128. doi: 10.3724/SP.J.1141.2012.E05-06E121

Peak identification for ChIP-seq data with no controls

doi: 10.3724/SP.J.1141.2012.E05-06E121
基金项目: This study was supported by the National 973 project of China (2011CBA01101) and the National Natural Science Foundation of China (30871343 and 31130051)
Peak Identification for ChIP-seq Data with no Controls
详细信息
    通讯作者:

    Bing SU

Peak identification for ChIP-seq data with no controls

Funds: This study was supported by the National 973 project of China (2011CBA01101) and the National Natural Science Foundation of China (30871343 and 31130051)
  • 摘要: Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is increasingly being used for genome-wide profiling of transcriptional regulation, as this technique enables dissection of the gene regulatory networks. With input as control, a variety of statistical methods have been proposed for identifying the enriched regions in the genome, i.e., the transcriptional factor binding sites and chromatin modifications. However, when there are no controls, whether peak calling is still reliable awaits systematic evaluations. To address this question, we used a Bayesian framework approach to show the effectiveness of peak calling without controls (PCWC). Using several different types of ChIP-seq data, we demonstrated the relatively high accuracy of PCWC with less than a 5% false discovery rate (FDR). Compared with previously published methods, e.g., the model-based analysis of ChIP-seq (MACS), PCWC is reliable with lower FDR. Furthermore, to interpret the biological significance of the called peaks, in combination with microarray gene expression data, gene ontology annotation and subsequent motif discovery, our results indicate PCWC possesses a high efficiency. Additionally, using in silico data, only a small number of peaks were identified, suggesting the significantly low FDR for PCWC.
  • [1] Arata Y, Fujita M, Ohtani K, Kijima S, Kato J-y. 2000. Cdk2-dependent and -independent Pathways in E2F-mediated S Phase Induction. J Biol Chem275(9): 6337-6345.
    [2] Bailey TL, Elkan C. 1994. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol2: 28-36.
    [3] Cairns J, Spyrou C, Stark R, Smith ML, Lynch AG, Tavare S. 2011. BayesPeak--an R package for analyzing ChIP-seq data. Bioinformatics27(5): 713-714.
    [4] Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, Wong E, Orlov YL, Zhang W, Jiang J, Loh YH, Yeo HC, Yeo ZX, Narang V, Govindarajan KR, Leong B, Shahab A, Ruan Y, Bourque G, Sung WK, Clarke ND, Wei CL, Ng HH. 2008. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell133(6): 1106-1117.
    [5] Chen Y, Negre N, Li Q, Mieczkowska JO, Slattery M, Liu T, Zhang Y, Kim TK, He HH, Zieba J, Ruan Y, Bickel PJ, Myers RM, Wold BJ, White KP, Lieb JD, Liu XS. 2012. Systematic evaluation of factors influencing ChIP-seq fidelity. Nat Methods9(6): 609-614.
    [6] Choi H, Nesvizhskii AI, Ghosh D, Qin ZS. 2009. Hierarchical hidden Markov model with application to joint analysis of ChIP-chip and ChIP-seq data. Bioinformatics25(14): 1715-1721.
    [7] Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA, Boyer LA, Young RA, Jaenisch R. 2010. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci USA107(50): 21931-21936.
    [8] DeGregori J, Kowalik T, Nevins JR. 1995. Cellular targets for activation by the E2F1 transcription factor include DNA synthesis- and G1/S-regulatory genes. Mol Cell Biol, 15(8): 4215-4224.
    [9] Edgar R, Domrachev M, Lash AE. 2002. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res, 30(1): 207-210.
    [10] Fejes AP, Robertson G, Bilenky M, Varhol R, Bainbridge M, Jones SJ. 2008. FindPeaks 3.1: a tool for identifying areas of enrichment from massively parallel short-read sequencing technology. Bioinformatics, 24(15): 1729-1730.
    [11] Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J. 2004. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol, 5(10): R80.
    [12] Guenther MG, Lawton LN, Rozovskaia T, Frampton GM, Levine SS, Volkert TL, Croce CM, Nakamura T, Canaani E, Young RA. 2008. Aberrant chromatin at genes encoding stem cell regulators in human mixed-lineage leukemia. Genes Dev, 22(24): 3403-3408.
    [13] Ho JW, Bishop E, Karchenko PV, Negre N, White KP, Park PJ. 2011. ChIP-chip versus ChIP-seq: lessons for experimental design and data analysis. BMC Genomics, 12: 134.
    [14] Hower V, Evans SN, Pachter L. 2011. Shape-based peak identification for ChIP-Seq. BMC Bioinformatics, 12: 15.
    [15] Huang da W, Sherman BT, Lempicki RA. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 4(1): 44-57.
    [16] Jothi R, Cuddapah S, Barski A, Cui K, Zhao K. 2008. Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data. Nucleic Acids Res, 36(16): 5221-5231.
    [17] Kapranov P, Cawley SE, Drenkow J, Bekiranov S, Strausberg RL, Fodor SP, Gingeras TR. 2002. Large-scale transcriptional activity in chromosomes 21 and 22. Science, 296(5569): 916-919.
    [18] Kharchenko PV, Tolstorukov MY, Park PJ. 2008. Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nat Biotechnol, 26(12): 1351-1359.
    [19] Langmead B, Trapnell C, Pop M, Salzberg S. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol, 10(3): R25.
    [20] Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J. 2009. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics, 25(15): 1966-1967.
    [21] Madigan D, Ridgeway G. 2003. Bayesian data analysis. In Ye, N. (eds). The Handbook of Data Mining CRC Press, USA: 103-131.
    [22] Micsinai M, Parisi F, Strino F, Asp P, Dynlacht BD, Kluger Y. 2012. Picking ChIP-seq peak detectors for analyzing chromatin modification experiments. Nucleic Acids Res, 40(9), e70.
    [23] Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP, Lee W, Mendenhall E, O'Donovan A, Presser A, Russ C, Xie X, Meissner A, Wernig M, Jaenisch R, Nusbaum C, Lander ES, Bernstein BE. 2007. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 448(7153): 553-560.
    [24] Osmanbeyoglu H, Hartmaier R, Oesterreich S, Lu X. 2012. Improving ChIP-seq peak-calling for functional co-regulator binding by integrating multiple sources of biological information. BMC Genomics, 13(Suppl 1): S1.
    [25] Park PJ. 2009. ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet, 10(10): 669-680.
    [26] Ramagopalan SV, Heger A, Berlanga AJ, Maugeri NJ, Lincoln MR, Burrell A, Handunnetthi L, Handel AE, Disanto G, Orton SM, Watson CT, Morahan JM, Giovannoni G, Ponting CP, Ebers GC, Knight JC. 2010. A ChIP-seq defined genome-wide map of vitamin D receptor binding: associations with disease and evolution. Genome Res, 20(10): 1352-1360.
    [27] Rozowsky J, Euskirchen G, Auerbach RK, Zhang ZD, Gibson T, Bjornson R, Carriero N, Snyder M, Gerstein MB. 2009. PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls. Nat Biotechnol, 27(1): 66-75.
    [28] Seuter S, Vaisanen S, Radmark O, Carlberg C, Steinhilber D. 2007. Functional characterization of vitamin D responding regions in the human 5-Lipoxygenase gene. Biochim Biophys Acta, 1771(7): 864-872.
    [29] Sinkkonen L, Malinen M, Saavalainen K, Vaisanen S, Carlberg C. 2005. Regulation of the human cyclin C gene via multiple vitamin D3-responsive regions in its promoter. Nucleic Acids Res, 33(8): 2440-2451.
    [30] Smith AD, Chung W-Y, Hodges E, Kendall J, Hannon G, Hicks J, Xuan Z, Zhang MQ. 2009. Updates to the RMAP short-read mapping software. Bioinformatics, 25(21): 2841-2842.
    [31] Spyrou C, Stark R, Lynch AG, Tavare S. 2009. BayesPeak: Bayesian analysis of ChIP-seq data. BMC Bioinformatics, 10: 299.
    [32] Sultan M, Schulz MH, Richard H, Magen A, Klingenhoff A, Scherf M, Seifert M, Borodina T, Soldatov A, Parkhomchuk D, Schmidt D, O'Keeffe S, Haas S, Vingron M, Lehrach H, Yaspo ML. 2008. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science, 321(5891): 956-960.
    [33] Tang C, Shi X, Wang W, Zhou D, Tu J, Xie X, Ge Q, Xiao PF, Sun X, Lu Z. 2010. Global analysis of in vivo EGR1-binding sites in erythroleukemia cell using chromatin immunoprecipitation and massively parallel sequencing. Electrophoresis, 31(17): 2936-2943.
    [34] Valouev A, Johnson DS, Sundquist A, Medina C, Anton E, Batzoglou S, Myers RM, Sidow A. 2008. Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nat Methods, 5(9): 829-834.
    [35] Valouev A, Johnson SM, Boyd SD, Smith CL, Fire AZ, Sidow A. 2011. Determinants of nucleosome organization in primary human cells. Nature, 474(7352): 516-520.
    [36] Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB. 2008. Alternative isoform regulation in human tissue transcriptomes. Nature, 456(7221): 470-476.
    [37] Xu X, Bieda M, Jin VX, Rabinovich A, Oberley MJ, Green R, Farnham PJ. 2007. A comprehensive ChIP-chip analysis of E2F1, E2F4, and E2F6 in normal and tumor cells reveals interchangeable roles of E2F family members. Genome Res, 17(11): 1550-1561.
    [38] Yan Z, DeGregori J, Shohet R, Leone G, Stillman B, Nevins JR, Williams RS. 1998. Cdc6 is regulated by E2F and is essential for DNA replication in mammalian cells. Proc Natl Acad Sci USA95(7): 3603-3608.
    [39] Zella LA, Meyer MB, Nerenz RD, Lee SM, Martowicz ML, Pike JW. 2010. Multifunctional enhancers regulate mouse and human vitamin D receptor gene transcription. Mol Endocrinol, 24(1): 128-147.
    [40] Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS. 2008. Model-based analysis of ChIP-Seq (MACS). Genome Biol, 9(9): R137.
  • [1] Qi ZHUO.  Advances in the study of neuroendocrinological regulation of kisspeptin in fish reproduction, Zoological Research. doi: 10.11813/j.issn.0254-5853.2013.5.0519
    [2] Yu-Qi ZHAO, Gong-Hua LI, Jing-Fei HUANG.  Comparative systems biology between human and animal models based on next-generation sequencing methods, Zoological Research. doi: 10.3724/SP.J.1141.2013.E02E35
    [3] YAN Xiao-Hong, WANG Zhi-Peng, WANG Ning.  Characterization of the structure, function and regulation of the chicken mir-17-92 cluster, Zoological Research. doi: 10.3724/SP.J.1141.2012.05455
    [4] CHEN Wen-Bo, WANG Xin, ZHOU Ya-Lu, DONG Hai-Yan, LIN Hao-Ran, LI Wen-Sheng.  Molecular cloning, tissue distribution and the expression in the regulation of food intake of prepro-orexin in Nile tilapia (Oreochromis niloticus), Zoological Research. doi: 10.3724/SP.J.1141.2011.03285
    [5] WANG Yi-Peng, LAI Ren.  Insect Antimicrobial Peptides: Structures, Properties and Gene Regulation, Zoological Research. doi: 10.3724/SP.J.1141.2010.01027
    [6] CUI Shu-fang, QU Xiu-hua, HAN Shi-zhong, YU Chen-lin, SUN Wei, TANG Qiu.  Application of Dual-color Fluorescence Hybridization Chip Technique in the Monitoring of the Genetic Quality of Inbred Mice Strains, Zoological Research.
    [7] WU Jian-sheng, WANG Xiao-ming.  Regulation of Bellowing of Chinese Alligators (Alligator sinensis) in the Wild, Zoological Research.
    [8] LIN Hao-ran.  The Interactions of Neuroendocrine Regulation on Reproduction and Growth in Fish, Zoological Research.
    [9] ZHENG De-shu.  Apoptosis and Programmed Cell Death, Zoological Research.
    [10] LI Dong-feng, LI Jie.  The Hormonal Regulation of Vocal Behavior in Songbirds, Zoological Research.
    [11] TAI Fa-dao, WANG Ting-zheng, MIN Yi-jian.  The Calling Behaviours and Sound Spectrograph of Microtus mandarinus, Zoological Research.
    [12] WANG Jin-luo, AI Xiao-jie, XU Qing-fu, CHEN Jie, HAN Zheng-kang.  Clenbuterol's Regulation Effects on Amino Acid Net Balance in Hu Sheep's Hindquarter Muscle, Zoological Research.
    [13] LI Yuan-you, LIN Hao-ran SHEN Fang.  Endocrine Regulation of The Frog Hypothalamus-Pituitary-Gonad Axis, Zoological Research.
    [14] CHEN Zhong, LU Qin, YE Shi-ming, ZHU Jian-qin.  The Regulation of GABA on Development of GABA Receptors in Embryonic Mice Cerebral Cortex, Zoological Research.
    [15] JIANG Shi-ren, DING Ping, ZHU ge-Yang.  The Comparative Study on The Characteristics of Calling Songs of Three Frog Species, Zoological Research.
    [16] CONG Ying-zi, YU Shi-guang.  Regulation of Surface IgD Expression on Murine B Cells, Zoological Research.
    [17] ZHONG Shu-ping, WEN Bo-gui.  Comparable Study on Chromatin Composition of Five Tissues From Rhesus Monkey, Zoological Research.
    [18] BEN Kun-long.  Mucosal Immune System and Fertility Regulation in Mammal and Human, Zoological Research.
    [19] FENG Xin-gang, GU Fu-kang, ZHANG Zuo-ren.  The Morphology Morphogenesis,and Their Regulation of Dorsi-Connected Stylonychia Mytilus, Zoological Research.
    [20] YANG Da-rong, SHEN Fa-rong et al., LU Zi, CHUN Shong et al..  Study on Ecology of Hepialidae Ⅲ.The Overwinter Larva and its Physiological Regulation, Zoological Research.
  • 加载中
计量
  • 文章访问数:  1656
  • HTML全文浏览量:  16
  • PDF下载量:  2271
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-06
  • 修回日期:  2012-10-31
  • 刊出日期:  2012-12-08

Peak identification for ChIP-seq data with no controls

doi: 10.3724/SP.J.1141.2012.E05-06E121
    基金项目:  This study was supported by the National 973 project of China (2011CBA01101) and the National Natural Science Foundation of China (30871343 and 31130051)
    通讯作者: Bing SU

摘要: Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is increasingly being used for genome-wide profiling of transcriptional regulation, as this technique enables dissection of the gene regulatory networks. With input as control, a variety of statistical methods have been proposed for identifying the enriched regions in the genome, i.e., the transcriptional factor binding sites and chromatin modifications. However, when there are no controls, whether peak calling is still reliable awaits systematic evaluations. To address this question, we used a Bayesian framework approach to show the effectiveness of peak calling without controls (PCWC). Using several different types of ChIP-seq data, we demonstrated the relatively high accuracy of PCWC with less than a 5% false discovery rate (FDR). Compared with previously published methods, e.g., the model-based analysis of ChIP-seq (MACS), PCWC is reliable with lower FDR. Furthermore, to interpret the biological significance of the called peaks, in combination with microarray gene expression data, gene ontology annotation and subsequent motif discovery, our results indicate PCWC possesses a high efficiency. Additionally, using in silico data, only a small number of peaks were identified, suggesting the significantly low FDR for PCWC.

English Abstract

Yanfeng ZHANG, Bing SU. Peak identification for ChIP-seq data with no controls[J]. 动物学研究, 2012, 33(E5-6): 121-128. doi: 10.3724/SP.J.1141.2012.E05-06E121
引用本文: Yanfeng ZHANG, Bing SU. Peak identification for ChIP-seq data with no controls[J]. 动物学研究, 2012, 33(E5-6): 121-128. doi: 10.3724/SP.J.1141.2012.E05-06E121
Yanfeng ZHANG, Bing SU. Peak identification for ChIP-seq data with no controls. Zoological Research, 2012, 33(E5-6): 121-128. doi: 10.3724/SP.J.1141.2012.E05-06E121
Citation: Yanfeng ZHANG, Bing SU. Peak identification for ChIP-seq data with no controls. Zoological Research, 2012, 33(E5-6): 121-128. doi: 10.3724/SP.J.1141.2012.E05-06E121
参考文献 (40)

目录

    /

    返回文章
    返回