留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Expression analysis of eight amphioxus genes involved in the Wnt/β-catenin signaling pathway

Jing WANG Guang LI Guang-Hui QIAN Jun-Hao HUA Yi-Quan WANG

Jing WANG, Guang LI, Guang-Hui QIAN, Jun-Hao HUA, Yi-Quan WANG. Expression analysis of eight amphioxus genes involved in the Wnt/β-catenin signaling pathway. Zoological Research, 2016, 37(3): 136-143. doi: 10.13918/j.issn.2095-8137.2016.3.136
Citation: Jing WANG, Guang LI, Guang-Hui QIAN, Jun-Hao HUA, Yi-Quan WANG. Expression analysis of eight amphioxus genes involved in the Wnt/β-catenin signaling pathway. Zoological Research, 2016, 37(3): 136-143. doi: 10.13918/j.issn.2095-8137.2016.3.136

文昌鱼Wnt/β-catenin信号通路中8个基因的表达分析

doi: 10.13918/j.issn.2095-8137.2016.3.136
详细信息
    通讯作者:

    Yi-Quan WANG

Expression analysis of eight amphioxus genes involved in the Wnt/β-catenin signaling pathway

Funds: This work was financially supported by the National Natural Science Foundation of China (31372188, 31471986) and the Science and Technology Innovation Commission of Shenzhen Municipality (CXZZ20120614164555920)
More Information
    Corresponding author: Yi-Quan WANG
  • 摘要: Wnt/β-catenin信号通路是后口动物胚胎发育的重要参与者,该通路在很多模式生物中都有过较为深入的研究,但其在原始脊索动物文昌鱼中功能的研究较少。为获取文昌鱼Wnt/β-catenin信号通路中详细的基础数据以便进一步的功能分析,我们鉴定分离了佛罗里达文昌鱼该信号通路中7个基因(Lrp5/6, Dvl, APC, CkIα, CkIδ, Gsk3β和Gro),系统进化分析表明文昌鱼基因组中这些基因家族中同源基因数目比脊椎动物中的少。整胚原位杂交分析结果表明这7个基因和该信号通路中另1成员Axin在文昌鱼受精卵中均有母源性表达,而且分布广泛;在早期分裂球至囊胚期间,Dvl基因的表达呈极性分布,主要位于动物极,而其余基因在各分裂球中的分布无明显差异;在原肠胚中期,这些基因均集中在预定中内胚层表达,但相互间的表达区域却不尽相同;待胚胎发育至神经胚时,它们的表达主要集中在轴旁体节或尾牙处;随着胚胎的发育,这些基因总的表达量均逐渐下降,在早期幼体时基因的表达只保留在咽区或者尾牙处。上述结果暗示,文昌鱼的Wnt/β-catenin信号通路可能涉及体节的形成、后部的生长,但没有参与中内胚层的分化。
  • [1] Beaster-Jones L, Kaltenbach SL, Koop D, Yuan SC, Chastain R, Holland LZ. 2008. Expression of somite segmentation genes in amphioxus:a clock without a wavefront? Development Genes and Evolution, 218(11-12):599-611.
    [2] Bolognesi R, Farzana L, Fischer TD, Brown SJ. 2008. Multiple Wnt genes are required for segmentation in the short-germ embryo of Tribolium castaneum. Current Biology, 18(20):1624-1629.
    [3] Darras S, Gerhart J, Terasaki M, Kirschner M, Lowe CJ. 2011. β-Catenin specifies the endomesoderm and defines the posterior organizer of the hemichordate Saccoglossus kowalevskii. Development, 138(5):959-970.
    [4] Delsuc F, Brinkmann H, Chourrout D, Philippe H. 2006. Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature, 439(7079):965-968.
    [5] Dunty WC, Jr., Biris KK, Chalamalasetty RB, Taketo MM, Lewandoski M, Yamaguchi TP. 2008. Wnt3a/β-Catenin signaling controls posterior body development by coordinating mesoderm formation and segmentation. Development, 135(1):85-94.
    [6] Henry JQ, Perry KJ, Wever J, Seaver E, Martindale MQ. 2008. β-Catenin is required for the establishment of vegetal embryonic fates in the nemertean, Cerebratulus lacteus. Developmental Biology, 317(1):368-379.
    [7] Hikasa H, Sokol SY. 2013. Wnt signaling in vertebrate axis specification. Cold Spring Harbor Perspectives in Biology, 5(1):a007955.
    [8] Holland LZ. 2002. Heads or tails? Amphioxus and the evolution of anteriorposterior patterning in deuterostomes. Developmental Biology, 241(2):209-228.
    [9] Holland LZ, Holland ND. 2007. A revised fate map for amphioxus and the evolution of axial patterning in chordates. Integrative and Comparative Biology, 47(3):360-372.
    [10] Holland LZ, Panfilio KA, Chastain R, Schubert M, Holland ND. 2005. Nuclear β-Catenin promotes non-neural ectoderm and posterior cell fates in amphioxus embryos. Developmental Dynamics, 233(4):1430-1443.
    [11] Holstein TW. 2012. The evolution of the Wnt pathway. Cold Spring Harbor Perspectives in Biology, 4(7):a007922.
    [12] Hoppler S, Moon RT. 1998. BMP-2/-4 and Wnt-8 cooperatively pattern the Xenopus mesoderm. Mechanisms of Development, 71(1-2):119-129.
    [13] Imai K, Takada N, Satoh N, Satou Y. 2000. β-Catenin mediates the specification of endoderm cells in ascidian embryos. Development, 127(14):3009-3020.
    [14] Li G, Shu ZH, Wang YQ. 2013. Year-round reproduction and induced spawning of Chinese amphioxus, Branchiostoma belcheri, in laboratory. PLoS One, 8(9):e75461.
    [15] Li G, Yang X, Shu ZH, Chen XY, Wang YQ. 2012. Consecutive spawnings of Chinese amphioxus, Branchiostoma belcheri, in captivity. PLoS One, 7(12):e50838.
    [16] Lin HC, Holland LZ, Holland ND. 2006. Expression of the AmphiTcf gene in amphioxus:insights into the evolution of the TCF/LEF gene family during vertebrate evolution. Developmental Dynamics, 235(12):3396-3403.
    [17] Logan CY, Nusse R. 2004. The Wnt signaling pathway in development and disease. Annual Review of Cell and Developmental Biology, 20:781-810.
    [18] Logan CY, Miller JR, Ferkowicz MJ, Mcclay DR. 1999. Nuclear β-Catenin is required to specify vegetal cell fates in the sea urchin embryo. Development, 126(2):345-357.
    [19] Martin BL, Kimelman D. 2009. Wnt signaling and the evolution of embryonic posterior development. Current Biology, 19(5):R215-R219.
    [20] Martindale MQ. 2005. The evolution of metazoan axial properties. Nature Reviews Genetics, 6(12):917-927.
    [21] McCauley BS, Akyar E, Saad HR, Hinman VF. 2015. Dose-dependent nuclear β-Catenin response segregates endomesoderm along the sea star primary axis. Development, 142(1):207-217.
    [22] Miller JR, Rowning BA, Larabell CA, Yang-Snyder JA, Bates RL, Moon RT. 1999. Establishment of the dorsal-ventral axis in Xenopus embryos coincides with the dorsal enrichment of dishevelled that is dependent on cortical rotation. The Journal of Cell Biology, 146(2):427-437.
    [23] Miyawaki K, Mito T, Sarashina I, Zhang HJ, Shinmyo Y, Ohuchi H, Noji S. 2004. Involvement of Wingless/Armadillo signaling in the posterior sequential segmentation in the cricket, Gryllus bimaculatus (Orthoptera), as revealed by RNAi analysis. Mechanisms of Development, 121(2):119-130.
    [24] Mizumoto K, Sawa H. 2007. Two βs or not two βs:regulation of asymmetric division by β-Catenin. Trends in Cell Biology, 17(10):465-473.
    [25] Momose T, Houliston E. 2007. Two oppositely localised frizzled RNAs as axis determinants in a cnidarian embryo. PLoS Biology, 5(4):e70.
    [26] Momose T, Derelle R, Houliston E. 2008. A maternally localised Wnt ligand required for axial patterning in the cnidarian Clytia hemisphaerica. Development, 135(12):2105-2113.
    [27] Niehrs C. 2004. Regionally specific induction by the Spemann-Mangold organizer. Nature Reviews Genetics, 5(6):425-434.
    [28] Onai T, Takai A, Setiamarga DH, Holland LZ. 2012. Essential role of Dkk3 for head formation by inhibiting Wnt/β-Catenin and Nodal/Vg1 signaling pathways in the basal chordate amphioxus. Evolution & Development, 14(4):338-350.
    [29] Onai T, Yu JK, Blitz IL, Cho KW, Holland LZ. 2010. Opposing Nodal/Vg1 and BMP signals mediate axial patterning in embryos of the basal chordate amphioxus. Developmental Biology, 344(1):377-389.
    [30] Onai T, Lin HC, Schubert M, Koop D, Osborne PW, Alvarez S, Alvarez R, Holland ND, Holland LZ. 2009. Retinoic acid and Wnt/β-Catenin have complementary roles in anterior/posterior patterning embryos of the basal chordate amphioxus. Developmental Biology, 332(2):223-233.
    [31] Petersen CP, Reddien PW. 2009. Wnt signaling and the polarity of the primary body axis. Cell, 139(6):1056-1068.
    [32] Qian GH, Li G, Chen XY, Wang YQ. 2013. Characterization and embryonic expression of four amphioxus Frizzled genes with important functions during early embryogenesis. Gene Expression Patterns, 13(8):445-453.
    [33] Ramel MC, Lekven AC. 2004. Repression of the vertebrate organizer by Wnt8 is mediated by Vent and Vox. Development, 131(16):3991-4000.
    [34] Rao TP, Kuhl M. 2008. An updated overview on Wnt signaling pathways:a prelude for more. Circulation Research, 106(12):1798-1806.
    [35] Schubert M, Holland LZ, Stokes MD, Holland ND. 2001. Three amphioxus Wnt genes (AmphiWnt3, AmphiWnt5, and AmphiWnt6) associated with the tail bud:the evolution of somitogenesis in chordates. Developmental Biology, 240(1):262-273.
    [36] Schubert M, Holland LZ, Panopoulou GD, Lehrach H, Holland ND. 2000. Characterization of amphioxus AmphiWnt8:insights into the evolution of patterning of the embryonic dorsoventral axis. Evolution & Development, 2(2):85-92.
    [37] Tadjuidje E, Cha SW, Louza M, Wylie C, Heasman J. 2011. The functions of maternal Dishevelled 2 and 3 in the early Xenopus embryo. Developmental Dynamics, 240(7):1727-1736.
    [38] Takada S, Stark KL, Shea MJ, Vassileva G, Mcmahon JA, Mcmahon AP. 1994. Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes & Development, 8(2):174-189.
    [39] Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10):2731-2739.
    [40] Tao QH, Yokota C, Puck H, Kofron M, Birsoy B, Yan D, Asashima M, Wylie CC, Lin XH, Heasman J. 2005. Maternal wnt11 activates the canonical wnt signaling pathway required for axis formation in Xenopus embryos. Cell, 120(6):857-871.
    [41] Tian Q, Nakayama T, Dixon MP, Christian JL. 1999. Post-transcriptional regulation of Xwnt-8 expression is required for normal myogenesis during vertebrate embryonic development. Development, 126(15):3371-3380.
    [42] Weitzel HE, Illies MR, Byrum CA, Xu RH, Wikramanayake AH, Ettensohn CA. 2004. Differential stability of β-Catenin along the animal-vegetal axis of the sea urchin embryo mediated by dishevelled. Development, 131(12):2947-2956.
    [43] Wikramanayake AH, Huang L, Klein WH. 1998. β-Catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo. Proceedings of the National Academy of Sciences of the United States of America, 95(16):9343-9348.
    [44] Wikramanayake AH, Hong M, Lee PN, Pang K, Byrum CA, Bince JM, Xu RH, Martindale MQ. 2003. An ancient role for nuclear β-Catenin in the evolution of axial polarity and germ layer segregation. Nature, 426(6965):446-450.
    [45] Yu JK, Holland LZ. 2009. Amphioxus whole-mount in situ hybridization. Cold Spring Harbor Protocols, 2009(9):pdb.prot5286.
    [46] Yu JK, Satou Y, Holland ND, Shin IT, Kohara Y, Satoh N, Bronner-Fraser M, Holland LZ. 2007. Axial patterning in cephalochordates and the evolution of the organizer. Nature, 445(7128):613-617.
  • [1] Yue Lan, Jiao Wang, Qiao Yang, Rui-Xiang Tang, Min Zhou, Guang-Lun Lei, Jing Li, Liang Zhang, Bi-Song Yue, Zhen-Xin Fan.  Blood transcriptome analysis reveals gene expression features of breast-feeding rhesus macaque (Macaca mulatta) infants, Zoological Research. doi: 10.24272/j.issn.2095-8137.2020.044
    [2] Ya-Fei DUAN, Ping LIU, Ji-Tao LI, Jian LI, Bao-Quan GAO, Ping CHEN.  Cloning and expression analysis of Cathepsin L cDNA of Exopalaemon carinicauda, Zoological Research. doi: 10.3724/SP.J.1141.2013.01039
    [3] XU Wei, Li Wei-Ye, WANG Yi-Quan.  Identification and expressional analysis of green fluorescent protein genes in amphioxus, Zoological Research. doi: 10.3724/SP.J.1141.2012.03304
    [4] LI Xin-Yi, LIN Yu-Shuang, ZHANG Hong-Wei.  Phylogenetic analysis and expression patterns of tropomyosin in amphioxus, Zoological Research. doi: 10.3724/SP.J.1141.2012.04389
    [5] JIN Li-Sha, HAO Xiang-Fen, PENG Bai-Lu, ZHANG Yan-Chun, WAN Yu-Ling, JI Fang, XIA Ji-.  Differential expression of six obesity-related genes with different disease phases of T2DM in cynomolgus monkey, Zoological Research. doi: 10.3724/SP.J.1141.2011.01050
    [6] ZHANG Xiu-Juan, LI Xue-Jia, XIA Ji-Liang, YAN Sun-Xing, JI Fang, ZHANG Yan-Chun.  Expression status of diabetes-associated genes in middle and aged cynomolgus monkeys, Zoological Research. doi: 10.3724/SP.J.1141.2011.03300
    [7] SHEN Wang, YE Mao, SHI Ge, WANG Ri-Xin.  cDNA Cloning, Characterization and mRNA Expression of a Profilin from the Swimming Crab Portunus trituberculatus, Zoological Research. doi: 10.3724/SP.J.1141.2010.0326
    [8] ZHOU Rui-Xue MENG Tao, Meng Hai-Bo, HENG Dun-Xue BIN Shi-Yu CHENG Jia, FU Gui-Hong, CHU Wu-Ying, *, ZHANG Jian-She , *Selection of Reference Genes in Transcription Analysis of Gene Expression of the Mandarin Fish, Siniperca chuasti, Zoological Research. doi: 10.3724/SP.J.1141.2010.02141
    [9] Li Wei-Ye, Zhong Jing, Wang Yi-Quan.  Analysis of Amphioxus Geographic Populations in the West Pacific Ocean Based on COX Ι Gene, Zoological Research. doi: 10.3724/SP.J.1141.2010.04375
    [10] ZHANG Yu-jun, MAO Bing-yu.  Developmental Expression of an Amphioxus (Branchiostoma belcheri) Gene Encoding a GATA Transcription Factor, Zoological Research. doi: 10.3724/SP.J.1141.2009.02137
    [11] WEI Yun-hu, ZHANG Yu-jun, CHEN Yuan, MAO Bing-yu.  Expansion of the Actin Gene Family in Amphioxus, Zoological Research. doi: 10.3724/SP.J.1141.2009.05473
    [12] LIU Chang-qing, LIU Shuai, BAO A-dong, LU Tao-feng, WU Hong-mei, ZHANG Hong-hai.  Molecular Clone, Expression, Structure and Function Study of Beijing Fatty Chicken ADSL Gene, Zoological Research.
    [13] DING Fang, ZHOU Hong-lin, LIU Yang, MA Lan, SU Ying, DU Ling.  Effects of Glucose on Development of ICR Mouse Embryosin vitro, Zoological Research.
    [14] LIAO Wan-qin, LIANG Xu-fang *, WANG Lin, MA Xu, FANG Ling, LI Gui-sheng.  cDNA Sequence Cloning and Tissue Expression of Uncoupling Protein 2 of Silver Carp (Hypophthalmichthys molitrix), Zoological Research.
    [15] WANG Yi-quan , *, ZHANG Qiu-jin, LU Xiao-mei, ZHONG Jing, SUN Yi.  Laboratory Culturing and Acquirement of the Second Filial Generation of Amphioxus, Zoological Research.
    [16] CAO Yun-chang, WEN Hong-bo, LI Wen-sheng, LIN Hao-ran.  The Profile of Growth Hormone Gene Expression in Extrapituitary Tissues of Lepomis cyanellus, Zoological Research.
    [17] WANG Yi-quan, FANG Shao-hua.  Taxonomic and Molecular Phylogenetic Studies of Amphioxus: A Review and Prospective Evaluation, Zoological Research.
    [18] WENG You-Zhu, HUANG Wei-Quan, FANG Yong-Qiang, YAO Bing, SUN Lan.  Study on GnRH Receptor (GnRHR) mRNA In situ Hybridization in The Nervous System,Hatschek's Pit and Gonad of Amphioxus,Branchiostoma belcheri, Zoological Research.
    [19] WANG Jin-xing, ZHAO Xiao-fan, GONG Bo.  Studies on The Expression of Isozyme Genes in Pupae and Embryogenesis of Antheraea pernyi, Zoological Research.
    [20] SHEN Qi-zhang.  In Low Temperature Keep the Embryo of Protosalanx Hyalocranius, Zoological Research.
  • 加载中
计量
  • 文章访问数:  1161
  • HTML全文浏览量:  43
  • PDF下载量:  1645
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-25
  • 修回日期:  2016-04-25
  • 刊出日期:  2016-05-18

Expression analysis of eight amphioxus genes involved in the Wnt/β-catenin signaling pathway

doi: 10.13918/j.issn.2095-8137.2016.3.136
    基金项目:  This work was financially supported by the National Natural Science Foundation of China (31372188, 31471986) and the Science and Technology Innovation Commission of Shenzhen Municipality (CXZZ20120614164555920)
    通讯作者: Yi-Quan WANG

摘要: Wnt/β-catenin信号通路是后口动物胚胎发育的重要参与者,该通路在很多模式生物中都有过较为深入的研究,但其在原始脊索动物文昌鱼中功能的研究较少。为获取文昌鱼Wnt/β-catenin信号通路中详细的基础数据以便进一步的功能分析,我们鉴定分离了佛罗里达文昌鱼该信号通路中7个基因(Lrp5/6, Dvl, APC, CkIα, CkIδ, Gsk3β和Gro),系统进化分析表明文昌鱼基因组中这些基因家族中同源基因数目比脊椎动物中的少。整胚原位杂交分析结果表明这7个基因和该信号通路中另1成员Axin在文昌鱼受精卵中均有母源性表达,而且分布广泛;在早期分裂球至囊胚期间,Dvl基因的表达呈极性分布,主要位于动物极,而其余基因在各分裂球中的分布无明显差异;在原肠胚中期,这些基因均集中在预定中内胚层表达,但相互间的表达区域却不尽相同;待胚胎发育至神经胚时,它们的表达主要集中在轴旁体节或尾牙处;随着胚胎的发育,这些基因总的表达量均逐渐下降,在早期幼体时基因的表达只保留在咽区或者尾牙处。上述结果暗示,文昌鱼的Wnt/β-catenin信号通路可能涉及体节的形成、后部的生长,但没有参与中内胚层的分化。

English Abstract

Jing WANG, Guang LI, Guang-Hui QIAN, Jun-Hao HUA, Yi-Quan WANG. 文昌鱼Wnt/β-catenin信号通路中8个基因的表达分析[J]. 动物学研究, 2016, 37(3): 136-143. doi: 10.13918/j.issn.2095-8137.2016.3.136
引用本文: Jing WANG, Guang LI, Guang-Hui QIAN, Jun-Hao HUA, Yi-Quan WANG. 文昌鱼Wnt/β-catenin信号通路中8个基因的表达分析[J]. 动物学研究, 2016, 37(3): 136-143. doi: 10.13918/j.issn.2095-8137.2016.3.136
Jing WANG, Guang LI, Guang-Hui QIAN, Jun-Hao HUA, Yi-Quan WANG. Expression analysis of eight amphioxus genes involved in the Wnt/β-catenin signaling pathway. Zoological Research, 2016, 37(3): 136-143. doi: 10.13918/j.issn.2095-8137.2016.3.136
Citation: Jing WANG, Guang LI, Guang-Hui QIAN, Jun-Hao HUA, Yi-Quan WANG. Expression analysis of eight amphioxus genes involved in the Wnt/β-catenin signaling pathway. Zoological Research, 2016, 37(3): 136-143. doi: 10.13918/j.issn.2095-8137.2016.3.136
参考文献 (46)

目录

    /

    返回文章
    返回