Volume 36 Issue 2
Mar.  2015
Turn off MathJax
Article Contents
Qing-Jian LIANG, Lei ZHAO, Jia-Qi WANG, Qian CHEN, Wei-Hong ZHENG, Jin-Song LIU. Effect of food restriction on the energy metabolism of the Chinese bulbul (Pycnonotus sinensis). Zoological Research, 2015, 36(2): 79-87.
Citation: Qing-Jian LIANG, Lei ZHAO, Jia-Qi WANG, Qian CHEN, Wei-Hong ZHENG, Jin-Song LIU. Effect of food restriction on the energy metabolism of the Chinese bulbul (Pycnonotus sinensis). Zoological Research, 2015, 36(2): 79-87.

Effect of food restriction on the energy metabolism of the Chinese bulbul (Pycnonotus sinensis)

Funds:  This study was financially supported by grants from the National Natural Science Foundation of China (31070366 and 31470472), and the Zhejiang Province Natural Science Foundation (LY13C030005)
More Information
  • Corresponding author: Jin-Song LIU
  • Received Date: 2014-10-31
  • Rev Recd Date: 2015-01-18
  • Publish Date: 2015-03-08
  • Food resources play an important role in the regulation of animals' physiology and behavior. We investigated the effect of short-term food restriction on metabolic thermogenesis of Chinese bulbuls (Pycnonotus sinensis) by measuring changes in body mass, body fat, basic metabolic rate (BMR), and organ mass of wild-caught Chinese bulbuls from Wenzhou, China. Short-term food restriction induced a significant decrease in body mass and body fat but body mass returned to normal levels soon after food was no longer restricted. Food restriction caused a significant reduction in BMR after 7 days (P<0.05), which returned to normal levels after food restriction ceased. Log total BMR was positively correlated with log body mass (r2=0.126, P<0.05). The dry masses of livers and the digestive tract were higher in birds that had been subject to temporary food restriction than in control birds and those subject to continual food restriction (P<0.001 and P<0.05, respectively). There was also significant differences in the dry mass of the lungs (P<0.05), heart (P<0.01), and spleen (P<0.05) in birds subject to short-term food restriction compared to control birds and those subject to continual food restriction. BMR was positively correlated with body and organ (heart, kidney and stomach) mass. These results suggest that the Chinese bulbul adjusts to restricted food availability by utilizing its energy reserves, lowering its BMR and changing the weight of various internal organs so as to balance total energy requirements. These may all be survival strategies that allow birds to cope with unpredictable variation in food abundance.
  • loading
  • [1]
    Bairlein F. 1987. Nutritional requirements for maintenance of body weight and fat deposition in the long-distance migratory garden warbler, Sylvia borin (Boddaert). Comparative Biochemistry and Physiology Part A: Physiology, 86(2): 337-347.
    [2]
    Bauchinger U. 2002. Phenotypic Flexibility of Organs during Long-Distance Migration in Garden Warblers (Sylvia borin): Implications for Migratory and Reproductive Periods. Ph.D. thesis, Technische Universität München, Münich.
    [3]
    Blem CR. 2000. Energy Balance. In: John D, ed. Sturkie's Avian Physiology. San Diego: Academic Press, 327-341.
    [4]
    Bordel R, Haase E. 2000. Influence of flight on protein catabolism, especially myofilament breakdown, in homing pigeons. Journal of Comparative Physiology B, 170(1): 51-58.
    [5]
    Burns DJ, Ben-Hamo M, Bauchinger U, Pinshow B. 2013. Huddling house sparrows remain euthermic at night, and conserve body mass. Journal of Avian Biology, 44(2): 198-202.
    [6]
    Chediack JG, Funes SC, Cid FD, Filippa V, Caviedes-Vidal E. 2012. Effect of fasting on the structure and function of the gastrointestinal tract of house sparrows (Passer domesticus). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 163(1): 103-110.
    [7]
    Cooper SJ. 2007. Daily and seasonal variation in body mass and visible fat in mountain chickadees and juniper titmice. The Wilson Journal of Ornithology, 119(4): 720-724.
    [8]
    Dawson WR, Marsh RL, Buttemer WA, Carey C. 1983. Seasonal and geographic variation of cold resistance in house finches Carpodacus mexicanus. Physiological Zoology, 56(3): 353-369.
    [9]
    DeWitt TJ, Sih A, Wilson DS. 1998. Costs and limits of phenotypic plasticity. Trends in Ecology & Evolution, 13(2): 77-81.
    [10]
    Ekman JB, Hake MK. 1990. Monitoring starvation risk: adjustments of body reserves in greenfinches (Carduelis chloris L.) during periods of unpredictable foraging success. Behavioral Ecology, 1(1): 62-67.
    [11]
    Gannes LZ. 1999. Flying, Fasting and Feeding: the Physiology of Bird Migration in Old World Sylviid Warblers and Turdid Thrushes. Ph.D. thesis, Princeton University, Princeton.
    [12]
    Gebhardt-Henrich S, Richner H. 1998. Causes of growth variation and its consequences for fitness. In: Starck JM, Ricklefs R. Avian Growth and Development. London: Oxford University Press, 324-339.
    [13]
    Grodziński W, Wunder BA. 1975. Ecological energetics of small mammals. In: Golley FB, Petrusewicz K, Ryszkowski L. Small Mammals: Their Productivity and Population Dynamics. Cambridge: Cambridge University Press, 173-204.
    [14]
    Hill RW. 1972. Determination of oxygen consumption by use of the paramagnetic oxygen analyzer. Journal of Applied Physiology, 33(2): 261-263.
    [15]
    Hume ID, Biebach H. 1996. Digestive tract function in the long-distance migratory garden warbler, Sylvia Borin. Journal of Comparative Physiology B, 166(9): 388-395.
    [16]
    Karasov WH, Pinshow B. 1998. Changes in lean mass and in organs of nutrient assimilation in a long-distance passerine migrant at a springtime stopover site. Physiological Zoology, 71(4): 435-448.
    [17]
    Karasov WH, Pinshow B. 2000. Test for physiological limitation to nutrient assimilation in a long-distance passerine migrant at a springtime stopover site. Physiological and Biochemical Zoology 73(3), 335-343.
    [18]
    Karasov WH, Pinshow B, Starck JM, Afik D. 2004. Anatomical and histological changes in the alimentary tract of migrating blackcaps (Sylvia atricapilla): a comparison among fed, fasted, food-restricted, and refed birds. Physiological and Biochemical Zoology, 77(1): 149-160.
    [19]
    Kendeigh SC. 1945. Resistance to hunger in birds. The Journal of Wildlife Management, 9(3): 217-226.
    [20]
    Kersten M, Piersma T. 1987. High levels of energy expenditure in shorebirds: Metabolic adaptations to an energetically expensive way of life. Ardea, 75(1):175-188.
    [21]
    Klaassen M, Oltrogge M, Trost L. 2004. Basal metabolic rate, food intake, and body mass in cold- and warm-acclimated Garden Warblers. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 137(4): 639-647.
    [22]
    Langslow DR. 1976. Weights of blackcaps on migration. Ringing & Migration, 1(2): 78-91.
    [23]
    Lindström Å. 1995. Stopover ecology of migrating birds: some unsolved questions. Israel Journal of Zoology, 41(3): 407-416.
    [24]
    Lee KA, Karasov WH, Caviedes-Vidal E. 2002. Digestive response to restricted feeding in migratory yellow-rumped warblers. Physiological and Biochemical Zoology, 75(3): 314-323.
    [25]
    Liknes ET, Swanson DL. 1996. Seasonal variation in cold tolerance, basal metabolic rate, and maximal capacity for thermogenesis in white-breasted nuthatches Sitta carolinensis and downy woodpeckers Picoides pubescens, two unrelated arboreal temperate residents. Journal of Avian Biology. 27(4):279-288.
    [26]
    Liknes ET, Guglielmo CG, Swanson DL. 2014. Phenotypic flexibility in passerine birds: Seasonal variation in fuel storage, mobilization and transport. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 174(1): 1-10.
    [27]
    Liknes ET, Swanson DL. 2011a. Phenotypic flexibility in passerine birds: seasonal variation of aerobic enzyme activities in skeletal muscle. Journal of Thermal Biology, 36(7): 430-436.
    [28]
    Liknes ET, Swanson DL. 2011b. Phenotypic flexibility of body composition associated with seasonal acclimatization in passerine birds. Journal of Thermal Biology, 36(6): 363-370.
    [29]
    Liu JS, Li M. 2006. Phenotypic flexibility of metabolic rate and organ masses among tree sparrows Passer montanus in seasonal acclimatization. Acta Zoologica Sinica, 52(3): 469-477. (in Chinese)
    [30]
    MacKinnon J, Phillipps K. 2000. A Field Guide to the Birds of China. London: Oxford University Press.
    [31]
    Marjoniemi K. 2000. The effect of short-term fasting on shivering thermogenesis in Japanese quail chicks (Coturnix coturnix japonica): indications for a significant role of diet-induced/growth related thermogenesis. Journal of Thermal Biology, 25(6): 459-465.
    [32]
    Marsh RL, Dawson WR. 1989. Avian adjustments to cold. In: Wang LCH. Animal Adaptation to Cold: Advances in Comparative and Environmental Physiology. Volume 4. Berlin Heidelberg: Springer, 205-253.
    [33]
    McCue MD. 2010. Starvation physiology: reviewing the different strategies animals use to survive a common challenge. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 156(1): 1-18.
    [34]
    McKechnie AE, Lovegrove BG. 2002. Avian facultative hypothermic responses: A review. The Condor, 104(4):705-724.McKechnie AE, Wolf BO. 2004. The allometry of avian basal metabolic rate: good predictions need good data. Physiological and Biochemical Zoology 77(3):502-521.
    [35]
    McNab BK. 1997. On the utility of uniformity in the definition of basal rate of metabolism. Physiological and Biochemical Zoology 70(6):718-720.
    [36]
    McNab BK. 2006. The relationship among flow rate, chamber volume and calculated rate of metabolism in vertebrate respirometry. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 145(3): 287-294.
    [37]
    McWilliams SR, Karasov WH. 2001. Phenotypic flexibility in digestive system structure and function in migratory birds and its ecological significance. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 128(3): 577-591.
    [38]
    McWilliams SR, Karasov WH. 2005. Migration takes guts: digestive physiology of migratory birds and its ecological significance. In: Mara P, Greenberg R. Birds of Two Worlds. Washington D.C.: Smithsonian Institution Press, 67-78.
    [39]
    Ni XY, Lin L, Zhou FF, Wang XH, Liu JS. 2011. Effects of photoperiod on body mass, organ masses and energy metabolism in Chinese bulbul (Pycnonotus sinensis). Acta Ecologica Sinica, 31(1): 1703-1713. (in Chinese)
    [40]
    Pendergast BA, Boag DA. 1973. Seasonal changes in the internal anatomy of spruce grouse in Alberta. The Auk, 90(2): 307-317.
    [41]
    Peng HY, Wen QH, Huang J, Huang YX. 2008. The study of spring diet habit of three specices of Pycnonotidae. Sichuan Journal of Zoology, 27(1): 99-101. (in Chinese)
    [42]
    Piersma T, Lindström A. 1997. Rapid reversible changes in organ size as a component of adaptive behaviour. Trends in Ecology & Evolution, 12(4): 134-138.
    [43]
    Piersma T, Gill RE Jr. 1998. Guts don't fly: small digestive organs in obese bar-tailed godwits. The Auk, 115(1): 196-203.
    [44]
    Pierce BJ, McWilliams SR. 2004. Diet quality and food limitation affect the dynamics of body composition and digestive organs in a migratory songbird (Zonotrichia albicollis). Physiological and Biochemical Zoology, 77(3): 471-483.
    [45]
    Prinzinger R, Siedle K. 1988. Ontogeny of metabolism, thermoregulation and torpor in the house martin Delichon u. urbica (L.) and its ecological significance. Oecologia, 76(2): 307-312.
    [46]
    Rappole JH, Warner DW. 1976. Relationships between behavior, physiology and weather in avian transients at a migration stopover site. Oecologia, 26(3): 193-212.
    [47]
    Reinertsen RE. 1996. Physiological andecological aspects of hypothermia. In: Carey C. Avian Energetics and Nutritional Ecology. New York: Chapman & Hall, 125-157.Sartori DRS, Migliorini RH, Veiga JAS, Moura JL, Kettelhut IC, Linder C. 1995. Metabolic adaptations induced by long-term fasting in quails. Comparative Biochemistry and Physiology Part A: Physiology, 111(3): 487-493.
    [48]
    Schew WA, Ricklefs RE. 1998. Developmental plasticity. In: Starck JM, Ricklefs RE. Avian Growth and Development: Evolution within the Altricial-precocial Spectrum. Oxford: Oxford University Press, 288-304.
    [49]
    Schmidt-Nielsen K. 1997. Animal Physiology: Adaptation and Environment. Cambridge: Cambridge University Press, 169-214.
    [50]
    Starck JM, Rahmaan GHA. 2003. Phenotypic flexibility of structure and function of the digestive system of Japanese quail. Journal of Experimental Biology, 206(11): 1887-1897.
    [51]
    Swanson DL. 2001. Are summit metabolism and thermogenic endurance correlated in winter-acclimatized passerine birds?. Journal of Comparative Physiology B, 171(6): 475-481.
    [52]
    Swanson DL.2010. Current Ornithology. In: Charles F. Thompson Seasonal Metabolic Variation in Birds: Functional and Mechanistic Correlates. New York: Springer Science, 75-129.
    [53]
    Vézina F, Williams TD. 2003. Plasticity in Body Composition in Breeding Birds: What Drives the Metabolic Costs of Egg Production?. Physiological and Biochemical Zoology, 76(5): 716-730.
    [54]
    Villarin JJ, Schaeffer PJ, Markle RA, Lindstedt MS. 2003. Chronic cold exposure increases liver oxidative capacity in the marsupial Monodelphis domestica. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 136(3): 621-630.
    [55]
    Wall JP, Cockrem JF. 2009. Effects of corticosterone treatment on responses to fasting in Japanese quail. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 154(2): 211-215.
    [56]
    Wiersma P, Munoz-Garcia A, Walker A, Williams JB. 2007. Tropical birds have a slow pace of life. Proceedings of the National Academy of Sciences. 104(22):9340-9345.
    [57]
    Williams JB, Tieleman BI. 2000. Flexibility in basal metabolic rate and evaporative water loss among hoopoe larks exposed to different environmental temperatures. The Journal of Experimental Biology, 203(20): 3153-3159.
    [58]
    Yong W, Moore FR. 1997. Spring stopover of intercontinental migratory thrushes along the northern coast of the Gulf of Mexico. The Auk, 114(2): 263-278.
    [59]
    Zhao ZJ, Chi QS, Cao J, Han YD. 2010. The energy budget, thermogenic capacity and behavior in Swiss mice exposed to a consecutive decrease in temperatures. The Journal of Experimental Biology, 213(23): 3988-3997.
    [60]
    Zheng GM, Zhang CZ. 2002. Birds in China. Beijing: China Forestry Press, 169-232. (in Chinese)
    [61]
    Zhang YP, Liu JS, Hu XJ, et al. 2006. Metabolism and thermoregulation in two species of passerines from southeastern China in summer. Acta Zoologica Sinica, 52(4): 641-647.
    [62]
    Zheng WH, Li M, Liu JS, Shao SL. 2008b. Seasonal acclimatization of metabolism in Eurasian tree sparrows (Passer montanus). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 151(4): 519-525.
    [63]
    Zheng WH, Liu JS, Jang XH, Fang YY, Zhang GK. 2008a. Seasonal variation on metabolism and thermoregulation in Chinese bulbul. Journal of Thermal Biology, 33(6): 315-319.
    [64]
    Zheng WH, Lin L, Liu JS, Pan H, Cao MT, Hu YL. 2013. Physiological and biochemical thermoregulatory responses of Chinese bulbuls Pycnonotus sinensis to warm temperature: Phenotypic flexibility in a small passerine. Journal of Thermal Biology, 38(5): 240-246.
    [65]
    Zhou W, Wang YP, Chen DH, Liu JS. 2010. Diurnal rhythms of Chinese bulbul (Pycnonotus sinensis) body temperature, body mass, and energy metabolism. Chinese Journal of Ecology, 29(12): 2395-2400. (in Chinese)
  • Relative Articles

    [1] Rong-Nan Li, Zhen-Dong Zhu, Yi Zheng, Ying-Hua Lv, Xiu-E Tian, De Wu, Yong-Jun Wang, Wen-Xian Zeng. Metformin improves boar sperm quality via 5′-AMP-activated protein kinase-mediated energy metabolism in vitro. Zoological Research, 2020, 41(5): 527-538.  doi: 10.24272/j.issn.2095-8137.2020.074
    [2] Yang Wang, Zhi-Gao Zeng, Liang Ma, Shu-Ran Li, Wei-Guo Du. Food restriction affects maternal investment but not neonate phenotypes in a viviparous lizard. Zoological Research, 2017, 38(2): 81-87.  doi: 10.24272/j.issn.2095-8137.2017.011
    [3] Jia-Qi WANG, Jia-Jia WANG, Xu-Jian WU, Wei-Hong ZHENG, Jin-Song LIU. Short photoperiod increases energy intake, metabolic thermogenesis and organ mass in silky starlings Sturnus sericeus. Zoological Research, 2016, 37(2): 75-83.  doi: 10.13918/j.issn.2095-8137.2016.2.75
    [4] Huan-Huan BAO, Qing-Jian LIANG, Hong-Lei ZHU, Xiao-Qiu ZHOU, Wei-Hong ZHENG, Jin-Song LIU. Metabolic rate and evaporative water loss in the silky starling (Sturnus sericeus). Zoological Research, 2014, 35(4): 280-286.  doi: 10.13918/j.issn.2095-8137.2014.4.280
    [5] Yu-Nan WU, Lin Lin, Yu-Chao XIAO, Li-Meng Zhou, Meng-Si WU, Hui-Ying Zhang, Jin-Song LIU. Effects of temperature acclimation on body mass and energy budget in the Chinese bulbul Pycnonotus sinensis. Zoological Research, 2014, 35(1): 33-41.  doi: 10.11813/j.issn.0254-5853.2014.1.033
    [6] Zhi-Jun ZHAO, Yong-An LIU, Jing-Ya XING, Mao-Lun ZHANG, Xiao-Ying NI, Jing CAO. The role of leptin in striped hamsters subjected to food restriction and refeeding. Zoological Research, 2014, 35(4): 262-271.  doi: 10.13918/j.issn.2095-8137.2014.4.262
    [7] Zhi-Jun ZHAO, Wen-Tao WEI, Ming-Zhen LI, Jing CAO. Body mass, energy budget and leptin of mice under stochastic food restriction and refeeding. Zoological Research, 2013, 34(6): 574-581.  doi: 10.11813/j.issn.0254-5853.2013.6.0574
    [8] LIU Jia, KONG Qing-Peng. Energy metabolism pathway related genes and adaptive evolution of tumor cells. Zoological Research, 2012, 33(6): 557-565.  doi: 10.3724/SP.J.1141.2012.06557
    [9] ZHENG Wei-Hong, FANG Yuan-Yuan, JIANG Xue-Hua, ZHANG Guo-Kai, LIU Jin-Song. Comparison of Thermogenic Character of Liver and Muscle in Chinese Bulbul Pycnonotus sinensis Between Summer and Winter. Zoological Research, 2010, 31(3): 319-327.  doi: 10.3724/SP.J.1141.2010.03319
    [10] ZHAO Zhi-jun, WANG Rui-rui, CAO Jing, PEI Lan-ying. Effect of Random Food Deprivation and Refeeding on Energy Budget and Development in Mice. Zoological Research, 2009, 30(5): 534-538.  doi: 10.3724/SP.J.1141.2009.05534
    [11] HAN Yi-cai, JIANG Shi-ren, DING Ping. Effects of Ambient Noise on the Vocal Frequency of Chinese Bulbuls,Pycnonotus sinensis in Lin'an and Fuyang City. Zoological Research, 2004, 25(2): 122-126.
    [12] AI Xiao-jie, ZHENG Yuan-lin, CHEN Wei-hua, HAN Zheng-kang. Effects of Cysteamine on the Metabolism of Sugar and Protein in Adult Geese. Zoological Research, 2003, 24(4): 302-304.
    [13] WEN Xiao-Bo, CHEN Li-Qiao, AI Chun-Xiang, JIANG Hong-Bo. Standard Metabolism of the Juvenile Crab Eriocheir sinensis. Zoological Research, 2001, 22(5): 425-428.
    [14] NIU Cui-juan, ZHANG Ting-jun, SUN Ru-yong. Aerial Respiration and Respiratory Gas Exchange Rate of Juvenile Soft-Shelled Turtle,Trionyx sinensis,Related to Temperature. Zoological Research, 1998, 19(2): 114-119.
    [15] ZHANG Tin-jun, NIU Cui-juan, SUN Ru-yong. Preliminary Study of Respiration Metabolism in The Soft-Shelled Turtle (Trionyx sinensis). Zoological Research, 1996, 17(2): 147-151.
    [16] ZOU En-min, DU Nan-shan, LAI Wei. The Effects of Mass Temperature and Thermal Acclimation on The Respiration Rate of The Chinese Freshwater Crab Eriocheir sinensis (Crustacea:Decapod). Zoological Research, 1995, 16(1): 49-58.
    [17] CHEN Qiang. A Study on The Resting Metabolic Rate of Eremias argus and Phrynocephalus frontalis. Zoological Research, 1994, 15(3): 0-18.
    [18] ZOU En-min, DU Nan-shan, LAI WEI. The Effects of Acute Progressive Hypoxia on The Respiration Rate of The Chinese Crab Eriocheir sinensis. Zoological Research, 1993, 14(4): 327-334.
    [19] LI Jing, LI Qing-fen, ZHENG Guang-mei. Studies on The Resting Metabolic Rate of The Yellow-Bellied Tragopan (Tragopan caboti). Zoological Research, 1993, 14(4): 341-345.
    [20] CHEN Xin, YANG Lan. The Study of Fasting and Exhausting of Energy Materials Within Night of Pycnonotus xanthorrhous (Anderson's Bulbul). Zoological Research, 1990, 11(3): 229-236.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (532) PDF downloads(1029) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return