Volume 33 Issue 3
May  2012
Turn off MathJax
Article Contents
ZHOU Zhao-Min, ZHAO Hong, ZHANG Zhong-Xu, WANG Ze-Hui, WANG Han. Allometry of scales in Chinese pangolins (Manis pentadactyla) and Malayan pangolins (Manis javanica) and application in judicial expertise. Zoological Research, 2012, 33(3): 271-275. doi: 10.3724/SP.J.1141.2012.03271
Citation: ZHOU Zhao-Min, ZHAO Hong, ZHANG Zhong-Xu, WANG Ze-Hui, WANG Han. Allometry of scales in Chinese pangolins (Manis pentadactyla) and Malayan pangolins (Manis javanica) and application in judicial expertise. Zoological Research, 2012, 33(3): 271-275. doi: 10.3724/SP.J.1141.2012.03271

Allometry of scales in Chinese pangolins (Manis pentadactyla) and Malayan pangolins (Manis javanica) and application in judicial expertise

doi: 10.3724/SP.J.1141.2012.03271
  • Received Date: 2011-12-23
  • Rev Recd Date: 2012-03-27
  • Publish Date: 2012-06-22
  • Pangolins are unique mammals in that they possess scales that serve a protective biological function. As an important raw material of traditional medicine, illegal trades of these scales are frequent and difficult to investigate or prosecute. We used allometric models of dry weight of scales to compare 35 Chinese pangolins (Manis pentadactyla) and 119 Malayan pangolins (Manis javanica). Our results showed that the dry weight of scales increases significantly faster with the length of head and body in Malayan pangolins (P=0.005), while dry weight of scales is positive (slope=3.725) in Malayan pangolins but isometric (slope=3.105) in Chinese pangolins. The differences in morphology between these species may reflect an evolutionary adaptation to different environments; Malayan pangolins in tropical regions appear to suffer from greater predation pressure than Chinese pangolins in temperate regions. We advise the conversion standards between dry weight of scales and number of individuals as 573.47 g in Chinese pangolins and 360.51 g in Malayan pangolins respectively, and when two are mixed together, average above two parameters of the median at 466.99 g. We propose these measurements be used as judicial evidences in forensic identification of related cases.
  • loading
  • [1]
    Bertness MD, Garrity SD, Levings SC. 1981. Predation pressure and gastropod foraging: a tropical-temperate comparison[J]. Evolution,35(5): 995-1007.
    [2]
    Bohonak AJ. 2004. RMA, Version 1.17: Software for Reduced Major Axis Regression[M]. San Diego: San Diego State University.
    [3]
    Bolser RC, Hay ME. 1996. Are tropical plants better defended? Palatability and defenses of temperate vs. tropical seaweeds[J]. Ecology, 77(8):2269-2286.
    [4]
    Chen Q, Liu RQ, Wang YX, Shi LM. 1991. Studies on the mitotic chromosomes and meiotic synaptonemal complexes (SC) of Chinese pangolin (Manis pentadactyla)[J]. Zool Res, 12(3): 299-304. [陈全, 刘瑞清, 王应祥, 施立明. 1991. 中国穿山甲有丝分裂染色体和减数分裂联会复合体(SC)的研究. 动物学研究, 12(3): 299-304.]
    [5]
    Domenici P, Turesson H, Brodersen J, Brönmark C. 2008. Predator-induced morphology enhances escape locomotion in crucian carp[J]. Proc R Soc B: Biol Sci, 275(1631): 195-201.
    [6]
    Fawcett MH. 1984. Local and latitudinal variation in predation on an herbivorous marine snail[J]. Ecology, 65(4): 1214-1230.
    [7]
    Franzen JL. 2005. The implications of the numerical dating of the Messel fossil deposit (Eocene, Germany) for mammalian biochronology[J].Ann Paléontol, 91(4): 329-335.
    [8]
    Gaines SD, Lubchenco J. 1982. A unified approach to marine plant-herbivore interactions. II. Biogeography[J]. Annu Rev Ecol Syst,13(1): 111-138.
    [9]
    Harvell CD. 1986. The ecology and evolution of inducible defenses in a marine bryozoan: cues, costs, and consequences[J]. Am Nat, 128(6):810-823.
    [10]
    Heck KL Jr, Wilson KA. 1987. Predation rates on decapod crustaceans in latitudinally separated seagrass communities: a study of spatial and temporal variation using tethering techniques[J]. J Exp Mar Biol Ecol,107(2): 87-100.
    [11]
    Jeanne RL. 1979. A latitudinal gradient in rates of ant predation[J]. Ecology,60(6): 1211-1224.
    [12]
    Katz LB, Dill LM. 1998. The scent of death: chemosensory assessment of predation risk by prey animals[J]. Ecoscience, 5(3): 361-394.
    [13]
    Ke YY, Chang H, Wu SB, Liu Q, Feng GX. 1999. A study of Chinese pangolin’s main food nutrition[J]. Zool Res, 20(5): 394-395. [柯亚永, 常弘, 吴诗宝, 刘茜, 冯干新. 1999. 穿山甲主要食物营养成分研究.动物学研究, 20(5): 394-395.]
    [14]
    Leonard GH, Bertness MD, Yund PO. 1999. Crab predation, waterborne cues, and inducible defenses in the blue mussel, Mytilus edulis[J].Ecology, 80(1): 1-14.
    [15]
    Martin TE, Martin PR, Olson CR, Heidinger BJ, Fontaine JJ. 2000. Parental care and clutch sizes in North and South American birds[J]. Science,287(5457): 1482-1485.
    [16]
    McKinnon L, Smith PA, Nol E, Martin JL, Doyle FI, Abraham KF, Gilchrist HG, Morrison RIG, Bêty J. 2010. Lower predation risk for migratory birds at high latitudes[J]. Science, 327(5963): 326-327.
    [17]
    Menge BA, Lubchenco J. 1981. Community organization in temperate and tropical rocky intertidal habitats: prey refuges in relation to consumer pressure gradients[J]. Ecol Monogr, 51(4): 429-450.
    [18]
    Meredith RW, Gatesy J, Murphy WJ, Ryder OA, Springer MS. 2009. Molecular decay of the tooth gene Enamelin (ENAM) mirrors the loss of enamel in the fossil record of placental mammals[J]. PLoS Genet,5(9): e1000634.
    [19]
    Nakaoka M. 2000. Nonlethal effects of predators on prey populations: predator-mediated change in bivalve growth[J]. Ecology, 81(4):1031-1045.
    [20]
    Nowak RM. 1999. Walker’s Mammals of the World[M]. 6th ed. Baltimore:The Johns Hopkins University Press.
    [21]
    Pennings SC, Siska EL, Bertness MD. 2001. Latitudinal differences in plant palatability in Atlantic Coast salt marshes[J]. Ecology, 82(5):1344-1359.
    [22]
    Peters RH. 1983. The Ecological Implications of Body Size[M]. Cambridge: Cambridge University Press.
    [23]
    Phillips BL, Shine R. 2005. The morphology, and hence impact, of an invasive species (the cane toad, Bufo marinus): changes with time since colonisation[J]. Anim Conserv, 8(4): 407-413.
    [24]
    Rayner JMV. 1985. Linear relations in biomechanics: the statistics of scaling functions[J]. J Zool: A, 206(3): 415-439.
    [25]
    Relyea RA. 2001. Morphological and behavioral plasticity of larval anurans in response to different predators[J]. Ecology, 82(2): 523-540.
    [26]
    Schlitter DA. 2005. Order pholidota[M] // Wilson DE, Reeder DM. Mammal Species of the World: A Taxonomic and Geographic Reference. 3rd ed. Baltimore: Johns Hopkins University Press,530-531.
    [27]
    Tollrian RI, Harvell CD. 1999. The Ecology and Evolution of Inducible Defenses[M]. Princeton: Princeton University Press.
    [28]
    Turner AM, Mittlebach GG. 1990. Predator avoidance and community structure: interactions among piscivores, planktivores, and plankton[J].Ecology, 71(6): 2241-2254.
    [29]
    Vermeij GJ. 1978. Biogeography and Adaptation[M]. Cambridge: Harvard University Press.
    [30]
    Wu SB, Wang YX, Feng Q. 2005. A new record of Mammalia in China-Manis Javanica[J]. Acta Zootaxon Sin, 30(2): 440-443. [吴诗宝, 王应祥, 冯庆. 2005. 中国兽类一新纪录--爪哇穿山甲. 动物分类学报, 30(2): 440-443.]
  • Relative Articles

    [1] Ting-Li Hu, Feng Cheng, Zhen Xu, Zhong-Zheng Chen, Lei Yu, Qian Ban, Chun-Lin Li, Tao Pan, Bao-Wei Zhang. Molecular and morphological evidence for a new species of the genus Typhlomys (Rodentia: Platacanthomyidae). Zoological Research, 2020, 41(): 1-8.  doi: 10.24272/j.issn.2095-8137.2020.132
    [2] Gary Wong, Yu-Hai Bi, Qi-Hui Wang, Xin-Wen Chen, Zhi-Gang Zhang, Yong-Gang Yao. Zoonotic origins of human coronavirus 2019 (HCoV-19 / SARS-CoV-2): why is this work important?. Zoological Research, 2020, 41(3): 213-219.  doi: 10.24272/j.issn.2095-8137.2020.031
    [3] Zhi-Gui ZHANG, De-Yan GE. Postnatal ontogenetic size and shape changes in the craniums of plateau pika and woolly hare (Mammalia:Lagomorpha). Zoological Research, 2014, 35(4): 287-293.  doi: 10.13918/j.issn.2095-8137.2014.4.287
    [4] Ling XU, Yu FAN, Xue-Long JIANG, Yong-Gang YAO. Molecular evidence on the phylogenetic position of tree shrews. Zoological Research, 2013, 34(2): 70-76.  doi: 10.3724/SP.J.1141.2013.02070
    [5] ZHAO Shuang, SONG Jia-Kun, WANG Xiao-Jie. Functional morphology of puffing behavior in pufferfish (Takifugu obscurus). Zoological Research, 2010, 31(5): 539-549.  doi: 10.3724/SP.J.1141.2010.05539
    [6] ZHOU Wei, LIU Zhao, WU Fei. Growth and Synchrony of Reproductive Organs in Males and Females of Rana pleuraden in Kunming Area, Yunnan. Zoological Research, 2009, 30(1): 99-104.  doi: 10.3724/SP.J.1141.2009.01099
    [7] YU Xiao-dong, LUO Tian-hong, WU Yu-ming, ZHOU Hong-zhang*. A Large-Scale Pattern in Species Diversity of Mammals in the Yangtze River Basin. Zoological Research, 2006, 27(2): 121-143.
    [8] YU Xiao-dong, LUO Tian-hong, WU Yu-ming, ZHOU Hong-zhang. A Large-Scale Pattern in Species Diversity of Amphibians in the Yangtze River Basin. Zoological Research, 2005, 26(6): 565-579.
    [9] QI Bao-ying, ZHENG Zhe-min, REN Hong-bao, JIN Hong, CHEN Jorigtoo. A DNA Molecular Evidence for Apolygus China as a Generic Taxon (Hemiptera:Heteroptera:Miridae). Zoological Research, 2004, 25(6): 515-521.
    [10] KE Ya-yong, CHANG Hong, WU Shi-bao, LIU Qian, FONG Gan-xin. A Study on Chinese Pangolin's Main Food Nutrition. Zoological Research, 1999, 20(5): 394-395.
    [11] CAO En-hua, BAI Chun-li, HE Yu-jian, FANG Ye, ZHANG Ping-cheng. Evidence of λ-DNA Forming New Structure in Vitro. Zoological Research, 1993, 14(zk): 25-31.
    [12] CHEN Quan, LIU Rui-qing, WANG Ying-xiang, SHI Li-ming. Studies on The Mitotic Chromosomes and Meiotic Synaptonemal Complexes (SC) of Chinese Pangolin (Manis pentadactyla). Zoological Research, 1991, 12(3): 299-304.
    [13] ZHOU Wei, XIE Qing-chun. Scanning Electron Microscopic Observations on Scale Surface Structures of Cyprinus in Qilu Lake,Yunnan. Zoological Research, 1990, 11(1): 35-39.
    [14] PAN Ru-liang, PENG Yan-zhang, YE Zhi-zhang, WANG Hong. Analysis of Tooth and Body Size Relationship in Phinopithecus. Zoological Research, 1990, 11(1): 73-82.
    [15] YU Fa-hong, PAN Ru-liang. A Comparative Study on The Growth of Long Bones in M.thibetana and M.mulatta. Zoological Research, 1989, 10(zk): 11-18.
    [16] PAN Pu-liang, WANG Hong, N.G.Jablonski. Long Bone and Skeletal Allometry in Rhinopithecus. Zoological Research, 1989, 10(1): 23-30.
    [17] WU Ci-bin, WANG Yi-ding, LING Yi-zhong, CHEN San. Comparative study on some Utility Characters of White wax Scale Produced in Several Different Locations of Sichuan,China. Zoological Research, 1987, 8(3): 321-328.
    [18] , . Area of the Northeastern Anshan in 41°10′ North Latitude Find the Chinese White-Wax Scale Insect,Ericerus pela Chavannes,Natural Species Group. Zoological Research, 1986, 7(1): 46-46.
    [19] ZHANG Yao-ping, PENG Yan-zhang, YE Zhi-zhang. Study on the Functional Morphology of Some Bnes of Rhinopithecus. Zoological Research, 1985, 6(2): 175-183.
    [20] PENG Yan-zhang, YE Zhi-zhang, LIU Rui-lin, ZHANG Yao-ping. Cranioracial Morphology of Rhinopithecus. Zoological Research, 1984, 5(zk): 7-22.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1647) PDF downloads(1641) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return