Volume 33 Issue 2
Mar.  2012
Turn off MathJax
Article Contents

ZHANG Hui, MENG Jian-Jun, WANG Ke, LIU Rui-Long, XI Min-Min, HUA Tian-Miao. Acute lesions of primary visual cortical areas in adult cats inactivate responses of neurons in higher visual cortices. Zoological Research, 2012, (2): 218-224. doi: 10.3724/SP.J.1141.2012.02218
Citation: ZHANG Hui, MENG Jian-Jun, WANG Ke, LIU Rui-Long, XI Min-Min, HUA Tian-Miao. Acute lesions of primary visual cortical areas in adult cats inactivate responses of neurons in higher visual cortices. Zoological Research, 2012, (2): 218-224. doi: 10.3724/SP.J.1141.2012.02218

Acute lesions of primary visual cortical areas in adult cats inactivate responses of neurons in higher visual cortices

doi: 10.3724/SP.J.1141.2012.02218
Funds:  National Natural Science Foundation of China (31171082); Natural Science Foundation of Anhui Province (070413138); KeyResearch Foundation of Anhui Province Education Department (KJ2009A167)
  • Received Date: 2011-12-08
  • Rev Recd Date: 2012-01-08
  • Publish Date: 2012-04-22
  • Psychophysical studies suggest that lateral extrastriate visual cortical areas in cats may mediate the sparing of vision largely by network reorganization following lesions of early visual cortical areas. To date, however, there is little direct physiological evidence to support this hypothesis. Using in vivo single-unit recording techniques, we examined the response of neurons in areas 19, 21, and 20 to different types of visual stimulation in cats with or without acute bilateral lesions in areas 17 and 18. Our results showed that, relative to the controls, acute lesions inactivated the response of 99.3% of neurons to moving gratings and 93% of neurons to flickering square stimuli in areas 19, 21, and 20. These results indicated that acute lesions of primary visual areas in adult cats may impair most visual abilities. Sparing of vision in cats with neonatal lesions in early visual cortical areas may result largely from a postoperative reorganization of visual pathways from subcortical nucleus to extrastriate visual cortical areas.
  • 加载中
  • [1] Azzopardi P, Fallah M, Gross CG, Rodman HR. 2003. Response latencies of neurons in visual areas MT and MST of monkeys with striate cortex lesions[J]. Neuropsychologia, 41(13): 1738-1756.
    [2] Barbur JL, Ruddock KH, Waterfield VA. 1980. Human visual responses in the absence of the geniculo-calcarine projection [J]. Brain, 103(4): 905-928.
    [3] Baseler HA, Morland AB, Wandell BA. 1999. Topographic organization of human visual areas in the absence of input from primary cortex[J]. J Neurosci, 19(7): 2619-2627.
    [4] Bishop PO, Kozak W, Vakkur GJ. 1962. Some quantitative aspects of the cat’s eye: axis and plane of reference, visual field co-ordinates and optics[J]. J Physiol, 163(3): 466-502.
    [5] Brainard DH. 1997. The psychophysics toolbox[J]. Spat Vis, 10(4): 433-436.
    [6] Bridge H, Thomas O, Jbabdi S, Cowey A. 2008. Changes in connectivity after visual cortical brain damage underlie altered visual function[J]. Brain, 131(6): 1433-1444.
    [7] Chino YM, Kaas JH, Smith EL III, Langston AL, Cheng H. 1992. Rapid reorganization of cortical maps in adult cats following restricted deafferentation in retina[J]. Vision Res, 32(5): 789-796.
    [8] Collins CE, Xu XM, Khaytin I, Kaskan PM, Casagrande VA, Kaas JH. 2005. Optical imaging of visually evoked responses in the middle temporal area after deactivation of primary visual cortex in adult primates[J]. Proc Natl Acad Sci USA, 102(15): 5594-5599.
    [9] Cowey A. 1962. Visual field defects in monkeys[J]. Nature, 193(4812): 302.
    [10] Cowey A, Stoerig P. 1991. The neurobiology of blindsight[J]. Trends Neurosci, 14(4): 140-145.
    [11] Cowey A, Stoerig P. 1995. Blindsight in monkeys[J]. Nature, 373(6511): 247-249.
    [12] Cowey A, Stoerig P. 1997. Visual detection in monkeys with blindsight[J]. Neuropsychologia, 35(7): 929-939.
    [13] Eysel UT, Schweigart G, Mittmann T, Eyding D, Qu Y, Vandesande F, Orban G, Arckens L. 1999. Reorganization in the visual cortex after retinal and cortical damage[J]. Restor Neurol Neurosci, 15(2-3): 153-164.
    [14] Girard P, Bullier J. 1989. Visual activity in area V2 during reversible inactivation of area 17 in the macaque monkey[J]. J Neurophysiol, 62(6): 1287-1302.
    [15] Girard P, Salin PA, Bullier J. 1991a. Visual activity in areas V3a and V3 during reversible inactivation of area V1 in the macaque monkey[J]. J Neurophysiol, 66(5): 1493-1503.
    [16] Girard P, Salin PA, Bullier J. 1991b. Visual activity in macaque area V4 depends on area 17 input[J]. Neuroreport, 2(2): 81-84.
    [17] Girard P, Salin PA, Bullier J. 1992. Response selectivity of neurons in area MT of the macaque monkey during reversible inactivation of area V1[J]. J Neurophysiol, 67(6): 1437-1446.
    [18] Goebel R, Muckli L, Zanella F E, Singer W, Stoerig P. 2001. Sustained extrastriate cortical activation without visual awareness revealed by fMRI studies of hemianopic patients[J]. Vision Res, 41(10-11): 1459-1474.
    [19] Hua TM, Bao PL, Huang CB, Wang ZH, Xu JW, Zhou YF, Lu ZL. 2010. Perceptual learning improves contrast sensitivity of V1 neurons in cats[J]. Curr Biol, 20(10): 887-894.
    [20] Hua TM, Li GZ, Tang CH, Wang ZH, Chang S. 2009. Enhanced adaptation of visual cortical cells to visual stimulation in aged cats[J]. Neurosci Lett, 451(1): 25-28.
    [21] Hua TM, Li XR, He LH, Zhou YF, Wang YC, Leventhal AG. 2006. Functional degradation of visual cortical cells in old cats[J]. Neurobiol Aging, 27(1): 155-162.
    [22] Hubel DH, Wiesel TN. 1962. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex[J]. J Physiol, 160(1): 106-154.
    [23] Huxlin KR. 2008. Perceptual plasticity in damaged adult visual systems[J]. Vision Res, 48(20): 2154-2166.
    [24] Illig KR, Danilov YP, Ahmad A, Kim CBY, Spear PD. 2000. Functional plasticity in extrastriate visual cortex following neonatal visual cortex damage and monocular enucleation[J]. Brain Research, 882(1-2): 241-250.
    [25] Kaas JH, Krubitzer LA, Chino YM, Langston AL, Polley EH, Blair N, Heinen SJ, Skavenski AA, Schmid LM, Rosa MG, Calford MB, Tolias AS, Ecker AS, Siapas AG, Hoenselaar A, Keliris GA, Logothetis NK. 1990. Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina[J]. Science, 248(4952): 229-231.
    [26] Kalil RE, Tong LL, Spear PD. 1991. Thalamic projections to the lateral suprasylvian visual area in cats with neonatal or adult visual cortex damage[J]. J Comp Neurol, 314(3): 512-525.
    [27] Lomber SG, MacNeil MA, Payne BR. 1995. Amplification of thalamic projections to middle suprasylvian cortex following ablation of immature primary visual cortex in the cat[J]. Cereb Cortex, 5(2): 166-191.
    [28] Lomber SG, Payne BR, Cornwell P, Pearson HE. 1993. Capacity of the retinogeniculate pathway to reorganize following ablation of visual cortical areas in developing and mature cats[J]. J Comp Neurol, 338(3): 432-457.
    [29] Mao YT, Hua TM, Pallas SL. 2011. Competition and convergence between auditory and cross-modal visual inputs to primary auditory cortical areas[J]. J Neurophysiol, 105(4): 1558-1573.
    [30] Mohler CW, Wurtz RH. 1977. Role of striate cortex and superior colliculus in visual guidance of saccadic eye movements in monkeys[J]. J Neurophysiol, 40(1): 74-94.
    [31] Moore T, Rodman HR, Gross CG. 2001. Direction of motion discrimination after early lesions of striate cortex (V1) of the macaque monkey[J]. Proc Natl Acad Sci U S A, 98(1): 325-330.
    [32] Moore T, Rodman HR, Repp AB, Gross CG. 1995. Localization of visual stimuli after striate cortex damage in monkeys: parallels with human blindsight[J]. Proc Natl Acad Sci U S A, 92(18): 8215-8218.
    [33] Ouellette BG, Minville K, Boire D, Ptito M, Casanova C. 2007. Complex motion selectivity in PMLS cortex following early lesions of primary visual cortex in the cat[J]. Vis Neurosci, 24(1): 53-64.
    [34] Payne BR. 2004. Neuroplasticity in the cat’s visual system: test of the role of the expanded retino-geniculo-parietal pathway in behavioral sparing following early lesions of visual cortex[J]. Exp Brain Res, 155(1): 69-80.
    [35] Payne BR, Lomber SG. 1998. Neuroplasticity in the cat’s visual system Origin, termination, expansion, and increased coupling of the retino-geniculo-middle suprasylvian visual pathway following early ablations of areas 17 and 18[J]. Exp Brain Res, 121(3): 334-349.
    [36] Payne BR, Lomber SG, Macneil MA, Cornwell P. 1996. Evidence for greater sight in blindsight following damage of primary visual cortex early in life[J]. Neuropsychologia, 34(8): 741-774.
    [37] Pelli DG. 1997. The VideoToolbox software for visual psychophysics: transforming numbers into movies[J]. Spat Vis, 10(4): 437-442.
    [38] Peng QS, Zhou J, Shi XM, Hua GP, Hua TM. 2011. Effects of urethane on the response properties of visual cortical neurons in young adult and old cats[J]. Zool Res, 32(3): 337-342.
    [39] Poggel DA, Kasten E, Müller-Oehring EM, Bunzenthal U, Sabel BA. 2006. Improving residual vision by attentional cueing in patients with brain lesions[J]. Brain Res, 1097(1): 142-148.
    [40] Rosa MGP, Tweedale R, Elston GN. 2000. Visual responses of neurons in the middle temporal area of new world monkeys after lesions of striate cortex[J]. J Neurosci, 20(14): 5552-5563.
    [41] Rossion B, de Gelder B, Pourtois G, Guérit JM, Weiskrantz L. 2000. Early extrastriate activity without primary visual cortex in humans[J]. Neurosci Lett, 279(1): 25-28.
    [42] Rushmore RJ, Payne BR. 2004. Neuroplasticity after unilateral visual cortex damage in the newborn cat[J]. Behav Brain Res, 153(2): 557-565.
    [43] Rushmore RJ, Rigolo L, Peer AK, Afifi LM, Valero-Cabré A, Payne BR. 2008. Age-dependent sparing of visual function after bilateral lesions of primary visual cortex[J]. Behav Neurosci, 122(6): 1274-1283.
    [44] Schiller PH, Malpeli JG. 1977. The effect of striate cortex cooling on area 18 cells in the monkey[J]. Brain Res, 126(2): 366-369.
    [45] Schmid MC, Mrowka SW, Turchi J, Saunders RC, Wilke M, Peters AJ, Ye FQ, Leopold DA. 2010. Blindsight depends on the lateral geniculate nucleus[J]. Nature, 466(7304): 373-377.
    [46] Schmid MC, Panagiotaropoulos T, Augath MA, Logothetis NK, Smirnakis SM. 2009. Visually driven activation in macaque areas V2 and V3 without input from the primary visual cortex[J]. PLoS One, 4(5): e5527.
    [47] Schoenfeld MA, Noesselt T, Poggel D, Tempelmann C, Hopf JM, Woldorff MG, Heinze H J, Hillyard SA. 2002. Analysis of pathways mediating preserved vision after striate cortex lesions[J]. Ann Neurol, 52(6): 814-824.
    [48] Schoenfeld MA, Noesselt T, Poggel D, Tempelmann C, Hopf JM, Woldorff MG, Heinze HJ, Hillyard SA. 2002. Analysis of pathways mediating preserved vision after striate cortex lesions[J]. Ann Neurol, 52(6): 814-824.
    [49] Shupert C, Cornwell P, Payne B. 1993. Differential sparing of depth perception, orienting, and optokinetic nystagmus after neonatal versus adult lesions of cortical areas 17, 18, and 19 in the cat[J]. Behav Neurosci, 107(4): 633-650.
    [50] Silvanto J, Cowey A, Lavie N, Walsh V. 2007. Making the blindsighted see[J]. Neuropsychologia, 45(14): 3346-3350.
    [51] Smirnakis SM, Brewer AA, Schmid MC, Tolias AS, Schüz A, Augath M, Inhoffen W, Wandell BA, Logothetis NK. 2005. Lack of long-term cortical reorganization after macaque retinal lesions[J]. Nature, 435(7040): 300-307.
    [52] Stoerig P, Cowey A. 1997. Blindsight in man and monkey[J]. Brain, 120(3): 535-559.
    [53] Stoerig P, Cowey A. 2007. Blindsight[J]. Curr Biol, 17(19): R822-R824.
    [54] Tong F. 2003. Primary visual cortex and visual awareness[J]. Nat Rev Neurosci, 4(3): 219-229.
    [55] Weiskrantz L. 2004. Roots of blindsight[J]. Prog Brain Res, 144: 227-241.
    [56] Weiskrantz L, Warrington EK, Sanders MD, Marshall J. 1974. Visual capacity in the hemianopic field following a restricted occipital ablation[J]. Brain, 97(1): 709-728.
    [57] Zeki S, Ffytche DH. 1998. The Riddoch syndrome: insights into the neurobiology of conscious vision[J]. Brain, 121(1): 25-45.
    [58] Zepeda A, Sengpiel F, Guagnelli MA, Vaca L, Arias C. 2004. Functional reorganization of visual cortex maps after ischemic lesions is accompanied by changes in expression of cytoskeletal proteins and NMDA and GABAA receptor subunits[J]. J Neurosci, 24(8): 1812-1821.
    [59] Zhou J, Shi XM, Peng QS, Hua GP, Hua TM. 2011. Decreased contrast sensitivity of visual cortical cells to visual stimuli accompanies a reduction of intracortical inhibition in old cats[J]. Zool Res, 32(5): 533-539.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1249) PDF downloads(1257) Cited by()

Related
Proportional views

Acute lesions of primary visual cortical areas in adult cats inactivate responses of neurons in higher visual cortices

doi: 10.3724/SP.J.1141.2012.02218
Funds:  National Natural Science Foundation of China (31171082); Natural Science Foundation of Anhui Province (070413138); KeyResearch Foundation of Anhui Province Education Department (KJ2009A167)

Abstract: Psychophysical studies suggest that lateral extrastriate visual cortical areas in cats may mediate the sparing of vision largely by network reorganization following lesions of early visual cortical areas. To date, however, there is little direct physiological evidence to support this hypothesis. Using in vivo single-unit recording techniques, we examined the response of neurons in areas 19, 21, and 20 to different types of visual stimulation in cats with or without acute bilateral lesions in areas 17 and 18. Our results showed that, relative to the controls, acute lesions inactivated the response of 99.3% of neurons to moving gratings and 93% of neurons to flickering square stimuli in areas 19, 21, and 20. These results indicated that acute lesions of primary visual areas in adult cats may impair most visual abilities. Sparing of vision in cats with neonatal lesions in early visual cortical areas may result largely from a postoperative reorganization of visual pathways from subcortical nucleus to extrastriate visual cortical areas.

ZHANG Hui, MENG Jian-Jun, WANG Ke, LIU Rui-Long, XI Min-Min, HUA Tian-Miao. Acute lesions of primary visual cortical areas in adult cats inactivate responses of neurons in higher visual cortices. Zoological Research, 2012, (2): 218-224. doi: 10.3724/SP.J.1141.2012.02218
Citation: ZHANG Hui, MENG Jian-Jun, WANG Ke, LIU Rui-Long, XI Min-Min, HUA Tian-Miao. Acute lesions of primary visual cortical areas in adult cats inactivate responses of neurons in higher visual cortices. Zoological Research, 2012, (2): 218-224. doi: 10.3724/SP.J.1141.2012.02218
Reference (59)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return