Volume 32 Issue 4
Jul.  2011
Turn off MathJax
Article Contents
YANG Shang-Chuan, DONG Jin-Run, QU Jia-Gui, HU Xin-Tian, WANG Zheng-Bo. A traumatic brain injury model for distinguishing between transplanted neural cells and host cells in vivo. Zoological Research, 2011, 32(4): 421-427. doi: 10.3724/SP.J.1141.2011.04421
Citation: YANG Shang-Chuan, DONG Jin-Run, QU Jia-Gui, HU Xin-Tian, WANG Zheng-Bo. A traumatic brain injury model for distinguishing between transplanted neural cells and host cells in vivo. Zoological Research, 2011, 32(4): 421-427. doi: 10.3724/SP.J.1141.2011.04421

A traumatic brain injury model for distinguishing between transplanted neural cells and host cells in vivo

doi: 10.3724/SP.J.1141.2011.04421
Funds:  Mechanical damaging method; Neural cell; Host cell; Neural stem cells; Traumatic brain injury
More Information
  • Author Bio:

    YANG Shang-Chuan,E-mail: Yangsc@mail.kiz.ac.cn

  • Corresponding author: HU Xin-Tian,WANG Zheng-Bo
  • Received Date: 2011-01-06
  • Rev Recd Date: 2011-04-14
  • Publish Date: 2011-08-22
  • To perform electrophysiological recording and other investigations on transplanted neural cells in vivo, we used mechanical damage to establish a special traumatic brain injury model that could distinguish transplanted cells from host cells. The morphology of the trauma-induced holes in the cortex of the rat brain was regular. The model was stable and repeatable. Neural stem cells were transplanted into the trauma-induced hole, and were able to survive for a long time. Most of the transplanted cells differentiated into neurons, and only a small amount turned into glia cells. There was a clear boundary between the host cells and the transplanted cells. Single cell electrophysiological recording on transplanted neural cells were detected in vivo. This study established a stable and repeatable traumatic brain injury model, which could be used to conduct in vivo electrophysiological recording research on transplanted neural cells.
  • loading
  • [1]
    Alvarez-Dolado M, Calcagnotto M, Karkar K, Southwell D, Jones-Davis D, Estrada R, Rubenstein J, Alvarez-Buylla A, Baraban S. 2006. Cortical inhibition modified by embryonic neural precursors grafted into the postnatal brain[J]. J Neurosci, 26(28): 7380-7389.
    [2]
     Benninger F, Beck H, Wernig M, Tucker KL, Brüstle O,  Scheffler B. 2003. Functional integration of embryonic stem cell-derived neurons in hippocampal slice cultures
    [J]. J Neurosci, 23(18): 7075-7083.
    [4]
     Chen J, Sanberg P, Li Y, Wang L, Lu M, Willing A, Sanchez-Ramos J, Chopp M. 2001. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats[J]. Stroke, 32(11): 2682-2688.
    [5]
     Chu K, Kim M, Jeong S, Kim S, Yoon B. 2003. Human neural stem cells can migrate, differentiate, and integrate after intravenous transplantation in adult rats with transient forebrain ischemia[J]. Neurosci Lett, 343(2): 129-133.
    [6]
     Cui L, Jiang J, Wei L, Zhou X, Fraser J, Snider B, Yu S. 2008. Transplantation of embryonic stem cells improves nerve repair and functional recovery after severe sciatic nerve axotomy in rats[J]. Stem Cells, 26(5): 1356-1365.
    [7]
     Dauer W, Przedborski S. 2003. Parkinson's Disease: Mechanisms and Models[J]. Neuron, 39(6): 889-909.
    [8]
     Ding S, Messam C, Li P, Selzer M, Dichter M, Haydon P. 2006. Murine brain progenitor cells have the ability to differentiate into functional neurons and integrate into the CN[J]. Cell Transplant, 15(8-9): 699-710.
    [9]
     Edward Dixon C, Clifton G, Lighthall J, Yaghmai A, Hayes R. 1991. A controlled cortical impact model of traumatic brain injury in the rat[J]. J Neurosci Methods, 39(3): 253-262.
    [10]
     Englund U, Björklund A, Wictorin K, Lindvall O, Kokaia M. 2002a. Grafted neural stem cells develop into functional pyramidal neurons and integrate into host cortical circuitry
    [J]. Proc Natl Acad Sci USA,  99(26): 17089-17094.
    [12]
     Englund U, Fricker-Gates RA, Lundberg C, Björklund A, Wictorin K. 2002b. Transplantation of human neural progenitor cells into the neonatal rat brain: extensive migration and differentiation with long-distance axonal projections[J]. Exp Neurol, 173(1): 1-21.
    [13]
     Fullwood N. 2007. Neural stem cells, acetylcholine and Alzheimer's disease[J]. Nat Chem Biol, 3(8) 435.
    [14]
     Gage F. 2000. Mammalian neural stem cells[J]. Science, 287(5457): 1433-1438.
    [15]
     Gaillard A, Prestoz L, Dumartin B, Cantereau A, Morel F, Roger M, Jaber M. 2007. Reestablishment of damaged adult motor pathways by grafted embryonic cortical neurons
    [J]. Nat Neurosci, 10(10): 1294-1299.
    [17]
     Ideguchi M, Palmer T, Recht L, Weimann J. 2010. Murine embryonic stem cell-derived pyramidal neurons integrate into the cerebral cortex and appropriately project axons to subcortical targets[J]. J Neurosci, 30(3): 894-904.
    [18]
     Ikeda R, Kurokawa M, Chiba S, Yoshikawa H, Ide M, Tadokoro M, Nito S, Nakatsuji N, Kondoh Y, Nagata K. 2005. Transplantation of neural cells derived from retinoic acid-treated cynomolgus monkey embryonic stem cells successfully improved motor function of hemiplegic mice with experimental brain injury[J]. Neurobiol Dis, 20(1): 38-48.
    [19]
     Jeong S, Chu K, Jung K, Kim S, Kim M, Roh J. 2003. Human neural stem cell transplantation promotes functional recovery in rats with experimental intracerebral hemorrhage[J]. Stroke, 34(9): 2258-2263.
    [20]
     Jin K, Sun Y, Xie L, Mao X, Childs J, Peel A, Logvinova A, Banwait S, Greenberg D. 2005. Comparison of ischemia-directed migration of neural precursor cells after intrastriatal, intraventricular, or intravenous transplantation in the rat[J]. Neurobiol Dis, 18(2): 366-374.
    [21]
     Kelly S, Bliss T, Shah A, Sun G, Ma M, Foo W, Masel J, Yenari M, Weissman I, Uchida N. 2004. Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex[J] Proc Natl Acad Sci USA, 101(32): 11839-11844.
    [22]
     Kesslak J, Nieto-Sampedro M, Globus J, Cotman C. 1986. Transplants of purified astrocytes promote behavioral recovery after frontal cortex ablation[J]. Exp Neurol, 92(2): 377-390.
    [23]
     Kim JH, Auerbach JM, Rodríguez-Gómez JA, Velasco I, Gavin D, Lumelsky N, Lee SH, Nguyen J, Sánchez-Pernaute R, Bankiewicz K, McKay R. 2002 Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease[J]. Nature, 418(6893): 50-56.
    [24]
     Lighthall J. 1988. Controlled cortical impact: a new experimental brain injury model[J]. J Neurotrauma, 5(1): 1-15.
    [25]
     Lindvall O, Kokaia Z. 2004. Recovery and rehabilitation in stroke: stem cells[J]. Stroke, 35(11 Suppl 1): 2691-4.
    [26]
     Lu P, Jones L, Snyder E, Tuszynski M. 2003. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury
    [J]. Exp Neurol, 181(2): 115-129.
    [28]
     Lundberg C, Martínez-Serrano A, Cattaneo E, McKay RD, Björklund A. 1997. Survival, integration, and differentiation of neural stem cell lines after transplantation to the adult rat striatum[J]. Exp Neurol, 145(2 Pt 1): 342-360.
    [29]
     Magnus T, Rao M. 2005. Neural stem cells in inflammatory CNS diseases: mechanisms and therapy[J]. J Cell Mol Med, 9(2): 303-319.
    [30]
     Makri G, Lavdas A, Katsimpardi L, Charneau P, Thomaidou D, Matsas R. 2010. Transplantation of embryonic neural stem/Precursor cells overexpressing BM88/Cend1 enhances the generation of neuronal cells in the injured mouse cortex[J]. Stem Cells , 28(1): 127-139.
    [31]
     Marmarou A, Foda M, Brink W, Campbell J, Kita H, Demetriadou K. 1994. A new model of diffuse brain injury in rats[J]. J Neurosurg, 8(2)0: 291-300.
    [32]
     Marutle A, Ohmitsu M, Nilbratt M, Greig N, Nordberg A, Sugaya K. 2007. Modulation of human neural stem cell differentiation in Alzheimer (APP23) transgenic mice by phenserine[J]. Proc Natl Acad Sci USA, 104(30): 12506.
    [33]
     McDonald J, Liu X, Qu Y, Liu S, Mickey S, Turetsky D, Gottlieb D, Choi D. 1999. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord[J]. Nat Med, 5(12): 1410-1412.
    [34]
     McIntosh T, Vink R, Noble L, Yamakami I, Fernyak S, Soares H, Faden A. 1989. Traumatic brain injury in the rat: characterization of a lateral fluid-percussion model
    [J]. Neuroscience, 28(1): 233-244.
    [36]
     Morita E, Watanabe Y, Ishimoto M, Nakano T, Kitayama M, Yasui K, Fukada Y, Doi K, Karunaratne A, Murrell W. 2008. A novel cell transplantation protocol and its application to an ALS mouse model[J]. Exp Neurol, 213(2): 431-438.
    [37]
     Murakami K, Kondo T, Yang G, Chen S, Morita-Fujimura Y, Chan P. 1999. Cold injury in mice: a model to study mechanisms of brain edema and neuronal apoptosis[J].Prog Neurobiol, 57(3): 289-299.
    [38]
     Prajerova I, Honsa P, Chvatal A, Anderova M. 2010. Neural stem/progenitor cells derived from the embryonic dorsal telencephalon of D6/GFP mice differentiate primarily into neurons after transplantation into a cortical lesion[J]. Cell Mol Neurobiol, 30(2): 199-218.
    [39]
     Rüschenschmidt C, Koch PG, Brüstle O, Beck H. 2005. Functional properties of ES cell-derived neurons engrafted into the hippocampus of adult normal and chronically epileptic rats[J]. Epilepsia , 46 Suppl 5: 174-183.
    [40]
     Riess P, Zhang C, Saatman K, Laurer H, Longhi L, Raghupathi R, Lenzlinger P, Lifshitz J, Boockvar J, Neugebauer E. 2002. Transplanted neural stem cells survive, differentiate, and improve neurological motor function after experimental traumatic brain injury[J]. Neurosurgery ,51(4):1043.
    [41]
     Sørensen AT, Thompson L, Kirik D, Björklund A, Lindvall O, Kokaia M. 2005. Functional properties and synaptic integration of genetically labelled dopaminergic neurons in intrastriatal grafts[J]. Eur J Neurosci, 21(10): 2793-2799.
    [42]
     Svendsen C, Caldwell M, Shen J, ter Borg M, Rosser A, Tyers P, Karmiol S, Dunnett S. 1997. Long-term survival of human central nervous system progenitor cells transplanted into a rat model of Parkinson's disease [J]. Exp Neurol, 148(1): 135-146.
    [43]
     Temple S. 2001. The development of neural stem cells[J]. Nature, 414(6859): 112-117.
    [44]
     Uchida K, Momiyama T, Okano H, Yuzaki M, Koizumi A, Mine Y, Kawase T. 2005. Potential functional neural repair with grafted neural stem cells of early embryonic neuroepithelial origin[J]. Neurosci Res, ,52(3): 276-286.
    [45]
     van Praag H, Schinder A, Christie B, Toni N, Palmer T, Gage F. 2002. Functional neurogenesis in the adult hippocampus[J]. Nature, 415(6875): 1030-1034.
    [46]
     Wennersten A, Meijer X, Holmin S, Wahlberg L, Mathiesen T. 2004. Proliferation, migration, and differentiation of human neural stem/progenitor cells after transplantation into a rat model of traumatic brain injury[J]. J Neurosurg, 100(1): 88-96.
    [47]
     
  • Relative Articles

    [1] Pei Zhang, Jie-Si Chen, Qi-Ye Li, Long-Xiang Sheng, Yi-Xing Gao, Bing-Zheng Lu, Wen-Bo Zhu, Xiao-Yu Zhan, Yuan Li, Zhi-Bing Yuan, Gang Xu, Bi-Tao Qiu, Min Yan, Chun-Xue Guo, You-Qiong Wang, Yi-Jun Huang, Jing-Xia Zhang, Fu-Yu Liu, Zhong-Wei Tang, Sui-Zhen Lin, David N. Cooper, Huan-Ming Yang, Jian Wang, Yu-Qi Gao, Wei Yin, Guo-Jie Zhang, Guang-Mei Yan. Neuroprotectants attenuate hypobaric hypoxia-induced brain injuries in cynomolgus monkeys. Zoological Research, 2020, 41(1): 3-19.  doi: 10.24272/j.issn.2095-8137.2020.012
    [2] Zheng-Bo Wang, Dong-Dong Qin, Xin-Tian Hu. Engrafted newborn neurons could functionally integrate into the host neuronal network. Zoological Research, 2017, 38(1): 5-6.  doi: 10.13918/j.issn.2095-8137.2017.005
    [3] DONG Jin-Run, GUO Li-Yun, QU Jia-Gui, QI Ren-Li, WANG Wen-Chao, XIAO Chun-Jie, WANG Zheng-Bo. Rhesus monkey embryonic stem cells differentiation, proliferation and allotransplantation. Zoological Research, 2012, 33(1): 43-48.  doi: 10.3724/SP.J.1141.2012.01043
    [4] . . Zoological Research, 1997, 18(4): 435-436.
    [5] , , , , , , . . Zoological Research, 1984, 5(zk): 98-98.
    [6] , , . . Zoological Research, 1984, 5(zk): 95-98.
    [7] , , , . . Zoological Research, 1984, 5(zk): 93-94.
    [8] , , , , . . Zoological Research, 1982, 3(zk): 21-22.
    [9] , , , , . . Zoological Research, 1982, 3(zk): 45-51.
    [10] , , . . Zoological Research, 1982, 3(zk): 47-48.
    [11] , . . Zoological Research, 1982, 3(zk): 19-20.
    [12] Zhangxiran, Wangjianhua, Chengyuze, Shiliming. . Zoological Research, 1982, 3(1): 53-67.
    [13] , . . Zoological Research, 1982, 3(zk): 49-50.
    [14] , , . . Zoological Research, 1982, 3(zk): 7-8.
    [15] , , . . Zoological Research, 1982, 3(zk): 51-52.
    [16] , , . . Zoological Research, 1982, 3(zk): 13-14.
    [17] , . . Zoological Research, 1982, 3(zk): 2-3.
    [18] , , , . . Zoological Research, 1982, 3(zk): 33-34.
    [19] , . . Zoological Research, 1982, 3(zk): 17-18.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1399) PDF downloads(1531) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return