Volume 32 Issue 4
Jul.  2011
Turn off MathJax
Article Contents
Oksana P Tuchina, Valery V Zhukov, Victor Benno Meyer-Rochow. Afferent and efferent pathways in the visual system of the freshwater snail Planorbarius corneus. Zoological Research, 2011, 32(4): 403-420. doi: 10.3724/SP.J.1141.2011.04403
Citation: Oksana P Tuchina, Valery V Zhukov, Victor Benno Meyer-Rochow. Afferent and efferent pathways in the visual system of the freshwater snail Planorbarius corneus. Zoological Research, 2011, 32(4): 403-420. doi: 10.3724/SP.J.1141.2011.04403

Afferent and efferent pathways in the visual system of the freshwater snail Planorbarius corneus

doi: 10.3724/SP.J.1141.2011.04403
More Information
  • Author Bio:

    Oksana P Tuchina

  • Corresponding author: Victor Benno Meyer-Rochow
  • Received Date: 2011-02-15
  • Rev Recd Date: 2011-06-09
  • Publish Date: 2011-08-22
  • Afferent and efferent neural elements of the retina and central ganglia in the freshwater snail Planorbarius corneus were labelled using retrograde transport of neurobiotin through the optic nerve. Axons of at least some photoreceptor cells become direct contributors to the optic nerve as no synaptic junctions could be detected. The processes enter the cerebral ganglion and form a dense bundle of thin afferent fibres, the so-called optical neuropil. Efferent neurons were revealed in all ganglia, except the buccal ones. Some of the ascending axons branch in the cerebral ganglia, cross the cerebro-cerebral commissure, reach the contralateral eye and form arborizations in the eye cup. Some efferent neurons send axons to different peripheral nerves as well: n.n. intestinalis, pallialis dexter, pallialis sinister internus et externus. Serotonin- and FMRF-amide-ergic fibres were revealed in the optic nerve. These fibres belong to those central neurons which send their axons to the ipsilateral eye only. They form abundant varicoses in the eye cup and nuclear layer of the retina, and possibly help to regulate retinal sensitivity to light.
  • loading
  • [1]
     Alkon D. Neural organization of molluscan visual system. 1973 [J]. Gen Physiol, 61: 444-461.
    [2]
     Barlow RBJ, Bolanowski SJJ, Brachman ML. 1977. Efferent optic nerve fibres mediate circadian rhythm in the Limulus eye [J]. Science 197: 86-89.
    [3]
     Barlow RB, Kaplan E, Renninger GH, Saito T. 1985. Efferent control of circadian rhythms in the Limulus lateral eye [J]. Neurosci Res, 2: 65-78.
    [4]
     Battelle BA, Evans JA, Chamberlain SC. 1982. Efferent fibres to Limulus eyes synthesizeand release octopamine [J]. Science 216: 1250-1252.
    [5]
     Battelle BA. 1984. Efferent  innervation to Limulus eyes [J]. Trends Neurosci, 7: 277-282.
    [6]
     Battelle BA. 2006. The eyes of Limulus polyphemus (Xiphosura, Chelicerata) and their afferent and efferent projections [J]. Arth Struct Develop, 35: 261-274.
    [7]
     Block GD, McMahon DG, Wallace SF, Friesen WO. 1984. Cellular analysis of the Bulla ocular circadian pacemaker system. I. A model for retinal organization
    [J]. Comp Physiol, A155: 365-378.
    [9]
     Block GD, McMahon DG. 1984. Cellular analysis of the Bulla ocular circadian pacemaker system. III. Localization of the circadian pacemaker system [J]. Comp Physiol, A155: 387-395.
    [10]
     Bobkova MV. 1998. Structural and functional organization of peripheral part of the visual system of the common pond snail Lymnaea stagnalis [J]. Evol Biochem Physiol, 34(6): 531-546.
    [11]
     Bobkova MV, Gál J, Zhukov VV, Shepeleva IP, Meyer-Rochow VB. 2004. Variations in the retinal designs of pulmonate snails (Mollusca, Gastropoda): squaring phylogenetic background and ecophysiological needs (I) [J]. Invert Biol, 123(2): 101-115.
    [12]
     Calman BG & Battelle BA. 1991. Central origin of the efferent neurons projecting to the eyes of Limulus polyphemus [J]. Vis Neurosci 6(5): 481-95.
    [13]
     Chamberlain SC, Barlow RB. 1979. Light and efferent activity control rhabdom turnover in Limulus photoreceptors [J]. Science, V206: 361-363.
    [14]
     Colwell CS, Khalsa SB, Block GD. 1992. FMRF-amide modulates the action of phase shifting agents on the ocular circadian pacemakers of Aplysia and Bulla [J]. Comp Physiol, 170A: 211-215.
    [15]
     Corrent G, McAdoo D, Eskin A. 1978. Serotonin shifts the phase of the circadian rhythm from the Aplysia eye [J]. Science, 202: 977-979.
    [16]
     Crow T & Bridge MC. 1985. Serotonin modulates photoresponses in Hermissenda type-B photoreceptors [J]. Neurosci Lett 60(1): 83-8.
    [17]
     Eskin A, Maresh RD. 1982. Serotonin or electrical optic nerve stimulation increases the photosensitivity of the Aplysia eye [J]. Comp Biochem Physiol, 73C: 27-31.
    [18]
     Fleissner G, Fleissner G. 1978. The optic nerve mediates the circadian pigment migration in the median eyes of the scorpion [J]. Comp Biochem Physiol, 61A: 69-71.
    [19]
     Fleissner G, Fleissner G. 2002. Retinal Circadian Rhythms. In: Biological Rhythms. Ed. Vinod Kumar
    [M]. Narosa Publishing House. New Dehli. 71-82.
    [21]
     Fleissner G, Schliwa M. 1977. Neurosecretory Fibres in the Median Eyes of the Scorpion, Androctonus australis L [J]. Cell Tiss Res 178(2): 189-198.
    [22]
     Gál J, Bobkova MV, Zhukov VV, Shepeleva IP, Meyer-Rochow VB. 2004. Fixed focal-length optics in pulmonate snails (Mollusca, Gastropoda): squaring phylogenetic background and ecophysiological needs (II) [J]. Invert Biol, 123(2): 116-127.
    [23]
     Gleadall IG, Ohtsu K, Gleadall E, Tsukahara Y. 1993. Screening-pigment migration in the octopus retina includes control by dopaminergic efferents [J]. Exp Biol, 185: 1-16.
    [24]
     Jacklet JW. 1969. Electrophysiological organization of the eye of Aplysia [J]. Gen Physiol, 53: 21-42. 
    [25]
     Jacklet JW. 1973. Neuronal population interactions in a circadian rhythm in Aplysia. In Neurobiology of Invertebrates (ad. J.Salánki) [M]. Akademiai Kiado, Budapest. 363-380.
    [26]
     Jacklet JW, Rolerson C. 1982. Electrical activity and structure of retinal cells of the Aplysia eye: II. Photoreceptors [J]. Exp Biol, 99: 381-395.
    [27]
     Jacklet JW, Schuster L, Rolerson C. 1982. Electrical activity and structure of retinal cells of the Aplysia eye: I. Secondary neurons [J]. Exp Biol, 99: 369-380.
    [28]
     Jacklet JW, Colquhoun W. 1983. Ultrastructure of photoreceptors and circadian pacemaker neurons in the eye of a gastropod, Bulla [J]. Neurocytol, 12: 673-696.
    [29]
     Jacklet JW. 1984. Neural organization and cellular mechanisms of circadian pacemakers [J]. Int Rev Cytol, 89: 251-294.
    [30]
     Jacklet JW, Klose M, Goldberg M. 1987. FMRF amide-like immunoreactive efferent fibres and FMRF amide suppression of pacemaker neurons in eyes of Bulla [J]. Neurobiol, 18: 433-449.
    [31]
     Kononenko NL, Zhukov VV. 2005. Neuroanatomical and immunocytochemical study of the head retractor muscle (HRM) innervation in the pond snail, Lymnaea stagnalis L
    [J]. Zool, 108(3): 217-237.
    [33]
     Lacroix L, Strack S, Olson L, Jacklet JW. 1991. Axons of circadian pacemaker neurons in the eye of Bulla project to the central nervous system and contralateral eye
    [J]. Comp Biochem Physiol, 98A: 383-391.
    [35]
     Michel S, Schoch K, Stevenson PA. 2000. Amine and amino acid transmitters in the eye of the mollusc Bulla gouldiana: An immunocytochemical study [J]. Comp Neurol 425: 244–256.
    [36]
     Nadakavukaren JJ, Lickey ME, Jordan WP. 1986. Regulation of the circadian clock in the Aplysia eye: mimicry of neural action by serotonin [J]. Neurosci 6:14-21.
    [37]
     Olson LM, Jacklet JW. 1985. The circadian pacemaker in the Aplysia eye sends axons throughout the central nervous system [J]. Neurosci, 5: 3214-3227.
    [38]
     Ovchinnikov AV. 1986. Morphological characteristics of chemosensory, visual and statocyst pathways in the snail Helix lucorum [J]. Neurophysiol, 18(1): 1-9.
    [39]
     Patton ML, Kater SB. 1972. Electrotonic conduction in the optic nerves of planorbid snails [J]. Exp Biol, 56: 695-702.
    [40]
     Roberts MH, Block GD. 1985. Analysis of mutual circadian pacemaker coupling between the two eyes of Bulla [J]. Biol Rhythm, 1(1): 55-75.
    [41]
     Roberts MH, Block GD, Lusska AE. 1987. Comparative studies of circadian pacemaker coupling in Opisthobranch molluscs [J]. Brain Res, 423(1-2): 286-292.
    [42]
     Roberts MH, Moore RY. 1987. Localization of neuropeptides in efferent terminals of the eye in the marine snail, Bulla gouldiana [J]. Cell Tiss Res, 248(1): 67-73.
    [43]
     Sakakibara M, Kawai R, Kobayashi S, Horikoshi T. 1998. Associative learning of visual and vestibular stimuli in Lymnaea [J]. Neurobiol Learning and Memory, 69: 1-12.
    [44]
     Sakakibara M. 2006. Comparative study of visuo-vestibular conditioning in Lymnaea stagnalis [J]. Biol Bull, 210: 298-307.
    [45]
     Suzuki H, Tasaki K. 1983. Inhibitory retinal efferents from dopaminergic cells in the optic lobe of the Octopus [J]. Vision Res, 23: 451-457.
    [46]
     Takahasi JS, Nelson DE, Eskin A. 1989. Immunocytochemical localization of serotonergic fibres innervating the ocular circadian system of Aplysia [J]. Neurosci, 28: 139-147.
    [47]
     Tuchina OP, Zhukov VV, Meyer-Rochow VB. Central and peripheral neuronal pathways revealed by backfilling with neurobiotin in the optic, tentacular and small labial nerves of Lymnaea stagnalis [J]. Acta Zool (in press).
    [48]
     Uehara A, Uehara K, Ogawa KE. 1993. Efferent fibres and daily rhabdomal changes in the anteromedial eye of the liphistiid spider, Heptathela kimurai [J]. Cell Tiss Res 272: 517-522.
    [49]
     Vakoljuk IA, Zhukov VV. 2000. The study of Lymnaea stagnalis photoreception from phototaxis manifestation [J]. Evol Biochem Physiol, 36(5): 544-550.
    [50]
     Yamashita S. 1990. Efferent optic nerve impulses in response to illumination of single eyes of orb weaving spiders [J]. Vision Res, 30(6): 817-821. 
    [51]
     Yamashita S, Tateda H. 1981. Efferent neural control in the eyes of orb weaving spiders [J]. Comp Physiol, 143: 477-483.
    [52]
     Yamashita S, Tateda H. 1983. Cerebral photosensitive neurons in the orb weaving spiders, Argiope bruennichii and A. amoena [J]. Comp Physiol, 150: 467-472.
    [53]
     Yamashita S. 2002. Efferent innervation of photoreceptors in spiders [J]. Microscop Res Tech, 58: 356-364
    [54]
     Zaitseva OV. 1982. Sensory elements in the central nervous system of the snail Lymnaea stagnalis (pleuro-visceral loop of the ganglia) [J]. Zh Evol Biohim Phisiol, 18(5): 482-490 (in Russian).
    [55]
     Zaitseva OV, Kovalev VA, Sokolov VA. 1982. Investigation of the cerebral region of the visual system in pulmonate mollusks [J]. Neirofiziol, 14(2): 179-184 (in Russian).
    [56]
     Zaitseva OV. 1987. The central elements of the tentacular and osphradial sensory systems of the pond snail Lymnaea stagnalis [J]. Sens Sist, 1(2): 154-165 (in Russian).
    [57]
     Zhukov VV. 1993. Some optical properties of lenses of freshwater pulmonate snails Lymnaea stagnalis L. and Planorbarius corneus L [J]. Sens Sist, 7(2): 17-24 (in Russian).
    [58]
     Zhukov VV, Bobkova MV, Vakoljuk IA. 2002. Eye structure and vision in the freshwater pulmonate mollusc Planorbarius corneus [J]. Evol Biochem Physiol, 38(4): 419-430.
    [59]
     Zhukov VV, Kononenko NL, Panormov IB, Borissenko SL. 2006. Serotonin changes the electrical responses to light of the eye of Lymnaea stagnalis [J]. Sens Sist, 20(4): 270-278 (in Russian).
    [60]
     Zhukov VV, Tuchina OP. 2006. Topographical asymmetry of efferent neurons in visual system of freshwater gastropod Lymnaea stagnalis. Abstr. International conference on functional neuromorphology. SPb (in Russian).
    [61]
     Zhukov VV. 2007. On the problem of retinal transmitters of the freshwater mollusc Lymnaea stagnalis [J]. Evol Biochem Physiol, 43(5): 524-532.
    [62]
     Zhukov VV, Tuchina OP. 2008. Structure of visual pathways in the nervous system of freshwater pulmonate mollusks [J]. Evol Biochem Physiol, 44(3): 341-353.
    [63]
     
    [64]
     
  • Relative Articles

    [1] Bo Zhang, Zhi-Gang Zhou, Yin Zhou, Yong-Chang Chen. Increased attention to snake images in cynomolgus monkeys: an eye-tracking study. Zoological Research, 2020, 41(1): 32-38.  doi: 10.24272/j.issn.2095-8137.2020.005
    [2] Ting Yan, Hui-Hui Zhou. Synchronization between frontal eye field and area V4 during free-gaze visual search. Zoological Research, 2019, 40(5): 394-403.  doi: 10.24272/j.issn.2095-8137.2019.055
    [3] Yue Yu, Jun Huang, Chun-Ming Zhang, Tian-Wen Chen, David S. Sandlin, Shao-Xun Wang, Alberto A. Arteaga, Jerome Allison, Yang Ou, Susan Warren, Paul May, Hong Zhu, Wu Zhou. Passive eye movements induced by electromagnetic force (EMF) in rats. Zoological Research, 2019, 40(3): 211-218.  doi: 10.24272/j.issn.2095-8137.2019.024
    [4] Li-Na Du, Jun Chen, Guo-Hua Yu, Jun-Xing Yang. Systematic relationships of Chinese freshwater semisulcospirids (Gastropoda, Cerithioidea) revealed by mitochondrial sequences. Zoological Research, 2019, 40(6): 541-551.  doi: 10.24272/j.issn.2095-8137.2019.033
    [5] Hong-Fa LU, Li-Na DU, Zhi-Qiang LI, Xiao-Yong CHEN, Jun-Xing YANG. Morphological analysis of the Chinese Cipangopaludina species (Gastropoda; Caenogastropoda: Viviparidae). Zoological Research, 2014, 35(6): 510-527.  doi: 10.13918/j.issn.2095-8137.2014.6.510
    [6] Li-Na ZHANG, Chang-He RONG, Yuan HE, Qiong GUAN, Bin HE, Xing-Wen ZHU, Jia-Ni LIU, Hong-Ju CHEN. A bird’s eye view of the algorithms and software packages for reconstructing phylogenetic trees. Zoological Research, 2013, 34(6): 640-650.  doi: 10.11813/j.issn.0254-5853.2013.6.0640
    [7] Oksana P. TUCHINA, Valery V. ZHUKOV, Victor B. MEYER-ROCHOW. . Zoological Research, 2012, 33(E1-2): 1-12.  doi: 10.3724/SP.J.1141.2012.01-02e1
    [8] LIU Jian-Tao, YANG Yong, GUO Xiao-Gang, CHEN Miao, DING Huan-Zhong, CHEN Yong-Long. Over-expression of atf4 in Xenopus embryos interferes with neurogenesis and eye formation. Zoological Research, 2011, 32(5): 485-491.  doi: 10.3724/SP.J.1141.2011.05485
    [9] ZHANG Qing-Yu, FAN Xiao-Na, CAO Yi. Expression of cannabinoid and opioid receptors in nervous as well as immune systems of Macaca mulatta and Tupaia belangeri. Zoological Research, 2011, 32(1): 31-39.  doi: 10.3724/SP.J.1141.2011.01031
    [10] MA Dong-mei, ZHU Hua-ping, GUI Jian-fang. Molecular Cloning and Expression Characterization of Prox1 in Goldfish (Carassius auratus) Eye Development. Zoological Research, 2007, 28(6): 589-596.
    [11] ZHOU Dao-lei, ZHAO Ya-jun*, LI Bao-ming*, SHI Zheng-xiang. Effect of Transport Space Allowance on Piglets' Behaviour and Performance. Zoological Research, 2006, 27(3): 261-268.
    [12] GONG Shi-ping, SHI Hai-tao, XIE Cai-jian, CHEN Chuan, XU Ru-mei. Spring Habitat Selection by Four Eyespotted Turtle (Sacalia quadriocellata) in Limu Mountain of Hainan Island. Zoological Research, 2005, 26(2): 142-146.
    [13] XUE Jun-zeng. Neurogenesis and Development of the Central Nervous System in the Embryo Stage of Swimming Crabs, Portunus trituberculatus. Zoological Research, 2005, 26(2): 184-189.
    [14] LUO Yong-ting, YUAN Wei-jia, MA Yong-jie, ZHANG Hui-qi SHENG Chun. Morphology and Ultrastructure of the Compound Eye in the Mud Crab (Scylla serrata). Zoological Research, 2003, 24(3): 220-226.
    [15] WU Min. Study on the Bradybaenid Landsnails in NW Sichuan (Gastropoda:Pulmonata:Stylommatophora). Zoological Research, 2002, 23(6): 504-513.
    [16] YE Shu-Feng, LU Jian-Jian. Analysis on the Spatial Distribution of Bullacta exarata (Mollusca:Gastropoda:Atyidae) Population in Yangtze River Estuary,China. Zoological Research, 2001, 22(2): 131-136.
    [17] WENG You-Zhu, HUANG Wei-Quan, FANG Yong-Qiang, YAO Bing, SUN Lan. Study on GnRH Receptor (GnRHR) mRNA In situ Hybridization in The Nervous System,Hatschek's Pit and Gonad of Amphioxus,Branchiostoma belcheri. Zoological Research, 2000, 21(6): 437-441.
    [18] WANG Ming-zhong, PENG Xian-pu, WU Lei, CHENG Yi-fong. A Study on The Phenotype Characteristics and Mechanism of Formation of W[aR84h] 89b10 Eye-Variegation Strain of Drosophila melanogaster. Zoological Research, 1994, 15(4): 61-66.
    [19] MENG Qing-wen. Studies on The Blood Vessels of Eye,Gas Bladder and Kidney of Snakehead. Zoological Research, 1990, 11(4): 265-271.
    [20] XIA Wu-ping. The Subfossil Margarya (Gastropoda,Viviparidae) From West Coast of Kunming Lake,With A Discussion of its Evolution. Zoological Research, 1982, 3(4): 339-347.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1504) PDF downloads(1632) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return