Volume 32 Issue 4
Jul.  2011
Turn off MathJax
Article Contents
LUO Ying, YU Tai-Lin, HUANG Cheng-Ming, ZHAO Tong, LI Han-Hua, LI Chang Jian. Metabolism and thermoregulation between Mrs Hume’s Pheasant (Syrmaticus humiae) and Elliot’s Pheasant (S. ellioti). Zoological Research, 2011, 32(4): 396-402. doi: 10.3724/SP.J.1141.2011.04396
Citation: LUO Ying, YU Tai-Lin, HUANG Cheng-Ming, ZHAO Tong, LI Han-Hua, LI Chang Jian. Metabolism and thermoregulation between Mrs Hume’s Pheasant (Syrmaticus humiae) and Elliot’s Pheasant (S. ellioti). Zoological Research, 2011, 32(4): 396-402. doi: 10.3724/SP.J.1141.2011.04396

Metabolism and thermoregulation between Mrs Hume’s Pheasant (Syrmaticus humiae) and Elliot’s Pheasant (S. ellioti)

doi: 10.3724/SP.J.1141.2011.04396
Funds:  This research was funded by the National Natural Science Foundation of China (30760039), the Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China, and the projects of Science and Technology Bureau of Yongzhou, Hunan (201019)
More Information
  • Author Bio:

    LUO Ying

  • Corresponding author: HUANG Cheng-Ming
  • Received Date: 2011-01-17
  • Rev Recd Date: 2011-05-19
  • Publish Date: 2011-08-22
  • To understand metabolic adaptations, the basal metabolic rate (BMR) of Mrs Hume’s Pheasant (Syrmaticus humiae) and Elliot’s Pheasant (Syrmaticus ellioti) were investigated. Metabolic rate (MR), body temperature (Tb ) and thermal conductance (C) were determined in both species at a temperatrue range of 5 − 35 ℃, respectively. Oxygen consumption was measured with a closed circuit respirometer. The thermal neutral zones (TNZ) were 24.5 − 31.6 ℃, and 23.0 −29.2 ℃, respectively. With a temperature range of 5 − 35 ℃, Mrs Hume’s Pheasant and Elliot’s Pheasant could maintained stable Tb at a mean of (40.47±0.64) and (40.36±0.10) ℃, respectively. Mean BMRs within TNZs were (1.36±0.84) mLO2/(g·h) for Mrs Hume’s Pheasant and (2.03±0.12) mLO2/(g·h) for Elliot’s Pheasant, which were 77% and 86% of the expected value based on their body mass, respectively. Thermal conductance of Mrs Hume’s Pheasant and Elliot’s Pheasant were (0.12±0.01) and (0.17±0.01) mLO2/(g·h·℃), below the lower critical temperature, respectively, which were 119% and 124% of the expected value based on their body mass, respectively. The ecophysiological characteristics of these species were low metabolic rate, high body temperature, and high thermal conductance, which allow both species to better adapt to the warmer climate environment in south China.
  • loading
  • [1]
     AL-Mansour MI. 2004. Seasonal variation in basal metabolic rate and body composition within individual sanderling bird Calidris alba
    [J]. J Biol Sci, 4: 564-567.
     Aschoff J. 1981. Thermal conductance in mammals and birds: its dependence on body size and circadian phase
    [J]. Comp Biochem Physiol, 69A: 611-619.
     Aschoff J, Pohl H. 1970. Metabolism at rest of birds as function of time of day and body size
    [J]. Ornithol, 111: 38-47.
     Baillie JEM, Hiltorr Taylor C, Stuart SN. 2004. 2004 IUCN Red List of Threatened Species: A Globe Species Assessment
    [M]. Switzerland: IUCN.
     Burton CT, Weathers WW. 2003. Energetics and thermoregulation of the Gouldian finch Erythrura gouldiae
    [J]. Emu, 103: 1-10.
     Canterbury G. 2002. Metabolic adaptation and climatic constraints on winter birds distribution
    [J]. Ecology, 83: 946-957.
     Corp N, Goman ML, Speakman JR. 1997. Seasonal variation in the resting metabolic rate of male wood mice Apodemus sylvaticus from two contrasting habitats 15km apart
    [J]. J Comp Physiol, 167: 229-239.
     Deng HL, Zhang XA. 1990. Standard metabolic rate in several species of passerine birds in alpine meadow
    [J]. Acta Zool Sin, 36(4):   377-384. (in Chinese)
     Górecki A. 1975. Kalabukhov-Skvortsov. Respirometer and Resting Metabolic Rate Measurement
    [M] // Grodziński W. IBP Handbook, No. 24: Methods for Ecological Energetics. Oxford: Blackwell, 309-313.
     Jessen C. 2001. Temperature Regulation in Humans and other Mammals
    [M]. New York: Springer - Verlag Berlin Heidelberg,    1-193.
     Jia F, Wu YF, Wu ML, Guo SB, An CL, Pang XB. 2003. Study on the resting metabolic rate (RMR) for the caged female brown eared pheasant (Crossoptilon mantchuricum)
    [J]. Chn J Zool, 38(6):     52-56. (in Chinese)
     Li J, Li QF, Zheng GM. 1993. Studies on the resting metabolic rate of the yellow-bellied tragopan
    [J]. Zool Res, 14(4): 341-345. (in Chinese)
     Li M, Liu JS, Han HL, Zhang HJ, Fang H. 2005. Metabolism and thermoregulation in waxwings Bombycilla garrulous and black-faced buntings Emberiza spodocephala
    [J]. Zool Res, 26: 287-293. (in Chinese)
     Liknes ET, Scott SM, Swanson DL. 2002. Seasonal acclimatization in the American goldfinch revisited: to what extent do metabolic rates vary seasonally
    [J]. Condor, 104: 548-557.
     Lin L, Wang LH, Liu JS. 2010. Metabolism and thermoregulation in Crested Mynas (Acridotheres cristatellus)
    [J]. Chn J Zool, 45(5): 47-53. (in Chinese)
     Liu JS, Chen MR, Wang Y, Wang XH, Song CG. 2004a. Metabolic thermogenesis of Siberian accentor (Prunella montanella)
    [J]. Zool Res, 25(2): 117-121. (in Chinese)
     Liu JS, Wang DH, Wang Y, Chen MH, Song CG, Sun RY. 2004b. Energetics and thermoregulation of the Carpodacus roseus, Fringilla montifringilla and Acanthis flammea
    [J]. Acta Zool Sin, 50: 357-363.
     Liu Z, Zhou W, Zhang Q, Li JX, Ling N, Zhang RE. 2008. Selection and plant community characteristics of foraging sites for Hume’s Pheasant (Syramticus humiae) in Nanhua part of Ailaoshan National Nature Reserve
    [J]. Zool Res, 29(6): 464-452. (in Chinese)
     Lovegrove BG. 2003. The influence of climate on the basal metabolic rate of small mammals: a slow-fast metabolic continuum
    [J]. J Comp Physiol, 173: 87-112.
     Mackinnon J, Phillipps, K, He FQ. 2000. A Field Guide toThirds of China
    [M]. Oxford University Press, 35: 15-30.
     Marschall U, Prinzinger R. 1991. Verleichende okophysiologie von funf prachtfinkenarten (Estrididae)
    [J]. Fur Orni, 132: 319-323.
     McKechnie AE, Wolf BO. 2004. The allometry of avian basal metabolic rate: good predictions need good data
    [J]. Physiol Biochem Zool, 77: 502-521.
     McNab BK. 1988. Food habits and the basal rate of metabolism in birds
    [J]. Oecologia, 77: 343-349.
     McNab BK. 2000. The influence of body mass, climate, and distribution on the energetic of south pacific pigeons
    [J]. Comp Biochem Physiol. 127A: 309-329.
     McNamara JM, Ekman J, Houston AI. 2004. The effect of thermoregulatory substitution on optimal energy reserves of small birds in winter
    [J]. Oikos, 105: 192-196.
     Prinzinger R, Prebmar A, Schleucher E. 1991. Body temperature in Birds
    [J]. Comp Biochem Physiol, 89: 499-506.
     Reynolds PS, Lee RM. 1996. Phylogenetic analysis of avian energetics Passerines and non-passerines do not differ
    [J]. Am Nat, 147:     735-759.
     Rezende EL, Swanson DL, Novoa FF. 2002. Passerines versus nonpasserines: so far, no statistical differences in the scaling of avian energetics
    [J]. J Exp Biol, 205: 101-107.
     Rozman J, Runciman D, Zann RA. 2003. Seasonal variation in body mass and fat of Zebra Finches in south-eastern Australia
    [J]. Emu, 103: 11-19.
     Schleucher E. 2002. Metabolism, body temperature and thermal conductance of fruit-doves (Aves: Columbidae, Treronidae)
    [J]. Comp Biochem Physiol, 131: 417-428.
     Schmidt-Nieisen K, 1997. Animal Physiology
    [M]. 5th ed. London: Cambridge University Press. 169-214.
     Shi JB, Zheng GM. 1997. The seasonal changes of habitats of Elliot’s pheasant
    [J]. Zool Res, 18(3): 275-283. (in Chinese)
     Stokkan KA. 1992. Energetics and adaptation to cold in ptarmigan in winter
    [J]. Ornis Scandinavica, 22: 366-370.
     Tieleman BI, Willians JB, Buschur ME. 2002. Physiological adjustments to arid mesic environments in larks (Alaudidae)
    [J]. Physiol Biochem Zool, 75: 305-313.
     Wang PC, Zhang P. 1986. Resting metabolic rates and homoeothermic level of different aged Eastern Ouill
    [J]. J East China Normal Univ :Natural Science Ed, 4: 108-112. (in Chinese)
     Weathers WW. 1979. Climatic adaptation in avian standard metabolic rate
    [J]. Oecologia, 42: 81-89.
     Weathers WW. 1997. Energetics and thermoregulation by small passerines of the humid, lowland tropics
    [J]. Auk, 114: 341-353.
     Williams JB, Tieleman BI. 2000. Flexibility in basal metabolic rate and evaporative water loss among hoopoe larks exposed to different environmental temperature
    [J]. J Exp Biol, 203(20): 3153-3159.
     Zhang LQ, Yang ZC, Wu YF, Li CQ, Sun RY. 2001. Study on the resting metabolic rate (RMR) of caged black grouse (Lyrurus tetrix baikallensis)
    [J]. J Hebei Normal Univ: Nat Sci Ed, 25(3): 381-384. (in Chinese)
     Zhang YP, Liu JS, Hu XJ, Yang Y, Chen LD. 2006. Metabolism and thermoregulation in two species of passerines from south-eastern China in summer
    [J]. Acta Zool Sin, 52(4): 641-647. (in Chinese)
     Zhang ZW, Ding CQ, Ding P, Zheng GM. 2003. The current status and a conservation strategy for species of Galliformes in China
    [J]. J Biodiver Sci, 11: 414-421. (in Chinese)
     Zhao T. 2009. Comparison of Nestlings Growth between Syrmaticus ellioti and Syrmaticus humiae in Captivity
    [D]. Ph.D. College of Life Science, Guangxi Normal University. (in Chinese)
  • Relative Articles

    [1] Xu Luo, Yu-Ze Zhao, Jing Ma, Jian-Qiang Li, Ji-Liang Xu. Nest survival rate of Reeves's pheasant(Syrmaticus reevesii) based on artificial nest experiments. Zoological Research, 2017, 38(1): 49-54.  doi: 10.13918/j.issn.2095-8137.2017.008
    [2] Qing-Gang QIAO, Hong-Ji LIANG, Min-Lan BAI, Wei-Hong ZHENG, Jin-Song LIU. Interspecific variation of thermoregulation between small migratory and resident passerines in Wenzhou. Zoological Research, 2016, 37(3): 167-175.  doi: 10.13918/j.issn.2095-8137.2016.3.167
    [3] Yu-Nan WU, Lin Lin, Yu-Chao XIAO, Li-Meng Zhou, Meng-Si WU, Hui-Ying Zhang, Jin-Song LIU. Effects of temperature acclimation on body mass and energy budget in the Chinese bulbul Pycnonotus sinensis. Zoological Research, 2014, 35(1): 33-41.  doi: 10.11813/j.issn.0254-5853.2014.1.033
    [4] Huan-Huan BAO, Qing-Jian LIANG, Hong-Lei ZHU, Xiao-Qiu ZHOU, Wei-Hong ZHENG, Jin-Song LIU. Metabolic rate and evaporative water loss in the silky starling (Sturnus sericeus). Zoological Research, 2014, 35(4): 280-286.  doi: 10.13918/j.issn.2095-8137.2014.4.280
    [5] Ying LUO, Tai-Lin YU, Cheng-Ming HUANG, Tong ZHAO, Han-Hua LI, Chang-Jian LI. Seasonal variations in the energy budget of Elliot’s pheasant (Syrmaticus ellioti) in cage. Zoological Research, 2013, 34(E1): 5619-E.  doi: 10.3724/SP.J.1141.2013.E01E19
    [6] XU Ji-Liang, ZHANG Xiao-Hui, ZHANG Zheng-Wang, *, ZHENG Guang-Mei, RUAN Xiang-Feng, ZHANG Ke-Yin, XI Bo. Breeding Habitat Selection of Reeves's Pheasant (Syrmaticus reevesii) in Dongzhai National Nature Reserve, Henan Province, China. Zoological Research, 2010, 31(2): 198-204.  doi: 10.3724/SP.J.1141.2010.02198
    [7] LIN Fang-Jun, JIANG Ping-Ping, DING Ping. Genetic analysis of microsatellite polymorphism in the Elliot’s Pheasant (Syrmaticus ellioti) in China. Zoological Research, 2010, 31(5): 461-468.  doi: 10.3724/SP.J.1141.2010.05461
    [8] LI Wei, ZHOU Wei, LIU Zhao, LI Ning. Habitat selection change of Mrs. Hume Pheasant (Syrmaticus humiae) in Dazhongshan during the year. Zoological Research, 2010, 31(5): 499-508.  doi: 10.3724/SP.J.1141.2010.05499
    [9] JIANG Ai-wu, ZHOU Fang *, LU Zhou, HAN Xiao-jing, SUN Ren-jie, LI Xiang-lin. Roost-site Selection of Mrs Hume's Pheasant (Syrmaticus humiae) in Guangxi, China. Zoological Research, 2006, 27(3): 249-254.
    [10] ZHANG Xiao-hui, XU Ji-liang, ZHANG Zheng-wang, ZHENG Guang-mei, RUAN Xiang-feng, XIE Fu-lu. Flocking Behavior of Reevess Pheasants (Syrmaticus reevesii) at Two Sites in Henan and Shaanxi. Zoological Research, 2004, 25(2): 89-95.
    [11] XU Ji-liang, ZHANG Xiao-hui, ZHANG Zheng-wang, ZHENG Guang-mei. Brood Habitat Characteristics of Reeve's Pheasant (Syrmaticus reevesii) in Dongzhai National Nature Reserve. Zoological Research, 2002, 23(6): 471-476.
    [12] WANG Yu-Shan, WANG Zu-Wang, WANG De-Hua. Effects of Temperature and Photoperiod on Maximum Metabolic Rates in Plateau Pikas and Root Voles. Zoological Research, 2001, 22(3): 200-204.
    [13] XU Xue-Feng, CHEN Xue-Jun, JI Xiang. Selected Body Temperature,Thermal Tolerance and Influence of Temperature on Food Assimilation and Locomotor Performance in Lacertid Lizards,Eremias brenchleyi. Zoological Research, 2001, 22(6): 443-448.
    [14] WANG De-Hua, WANG Yu-Shan, WANG Zu-Wang. Metabolism and Thermoregulation in Greater Long-Tailed Hamster (Cricetulus triton) From Northern China Farmland. Zoological Research, 2000, 21(6): 452-457.
    [15] NIU Cui-juan, ZHANG Ting-jun, SUN Ru-yong. Aerial Respiration and Respiratory Gas Exchange Rate of Juvenile Soft-Shelled Turtle,Trionyx sinensis,Related to Temperature. Zoological Research, 1998, 19(2): 114-119.
    [16] LI Ren-de, CHEN Qiang, LIU Nai-fa. Effects of Body Temperature on Electrocardiograms of Lizard Eremias multiocellata. Zoological Research, 1998, 19(4): 269-276.
    [17] ZOU En-min, DU Nan-shan, LAI Wei. The Effects of Mass Temperature and Thermal Acclimation on The Respiration Rate of The Chinese Freshwater Crab Eriocheir sinensis (Crustacea:Decapod). Zoological Research, 1995, 16(1): 49-58.
    [18] CHEN Qiang. A Study on The Resting Metabolic Rate of Eremias argus and Phrynocephalus frontalis. Zoological Research, 1994, 15(3): 0-18.
    [19] LI Jing, LI Qing-fen, ZHENG Guang-mei. Studies on The Resting Metabolic Rate of The Yellow-Bellied Tragopan (Tragopan caboti). Zoological Research, 1993, 14(4): 341-345.
    [20] DING Ping ZHU Ge-yang, ZHANG Ci-zu. The Studies on Breeding Ecology of Syrmaticus ellioti Swinhoe. Zoological Research, 1990, 11(2): 139-145.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1692) PDF downloads(1739) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint