Volume 42 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
Han Yang, Bin Lyu, Hai-Qiang Yin, Shu-Qiang Li. Comparative transcriptomics highlights convergent evolution of energy metabolic pathways in group-living spiders. Zoological Research, 2021, 42(2): 195-206. doi: 10.24272/j.issn.2095-8137.2020.281
Citation: Han Yang, Bin Lyu, Hai-Qiang Yin, Shu-Qiang Li. Comparative transcriptomics highlights convergent evolution of energy metabolic pathways in group-living spiders. Zoological Research, 2021, 42(2): 195-206. doi: 10.24272/j.issn.2095-8137.2020.281

Comparative transcriptomics highlights convergent evolution of energy metabolic pathways in group-living spiders

doi: 10.24272/j.issn.2095-8137.2020.281
Funds:  This study was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB31000000) to S.Q.L
More Information
  • Although widely thought to be aggressive, solitary, and potentially cannibalistic, some spider species have evolved group-living behaviors. The distinct transition provides the framework to uncover group-living evolution. Here, we conducted a comparative transcriptomic study and examined patterns of molecular evolution in two independently evolved group-living spiders and twelve solitary species. We report that positively selected genes among group-living spider lineages are significantly enriched in nutrient metabolism and autophagy pathways. We also show that nutrient-related genes of group-living spiders convergently experience amino acid substitutions and accelerated relative evolutionary rates. These results indicate adaptive convergence of nutrient metabolism that may ensure energy supply in group-living spiders. The decelerated evolutionary rate of autophagy-related genes in group-living lineages is consistent with an increased constraint on energy homeostasis as would be required in a group-living environment. Together, the results show that energy metabolic pathways play an important role in the transition to group-living in spiders.
  • loading
  • [1]
    Andrews S. 2010. FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
    [2]
    Avilés L, Guevara J. 2017. Sociality in spiders. In: Rubenstein DR and Abbot P. Comparative Social Evolution. Cambridge: Cambridge University Press, 188–223.
    [3]
    Bazazi S, Arganda S, Moreau M, Jeanson R, Dussutour A. 2016. Responses to nutritional challenges in ant colonies. Animal Behaviour, 111: 235−249. doi: 10.1016/j.anbehav.2015.10.021
    [4]
    Bechsgaard J, Schou MF, Vanthournout B, Hendrickx F, Knudsen B, Settepani V, et al. 2019. Evidence for faster X chromosome evolution in spiders. Molecular Biology and Evolution, 36(6): 1281−1293. doi: 10.1093/molbev/msz074
    [5]
    Bilde T, Lubin Y. 2001. Kin recognition and cannibalism in a subsocial spider. Journal of Evolutionary Biology, 14(6): 959−966. doi: 10.1046/j.1420-9101.2001.00346.x
    [6]
    Brodschneider R, Crailsheim K. 2010. Nutrition and health in honey bees. Apidologie, 41(3): 278−294. doi: 10.1051/apido/2010012
    [7]
    Buskirk RE. 1981. Sociality in the arachnida. In: Hermann HR. Social Insects. New York: Academic Press, 281–367.
    [8]
    Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 25(15): 1972−1973. doi: 10.1093/bioinformatics/btp348
    [9]
    Chen SF, Zhou YQ, Chen YR, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34(17): i884−i890. doi: 10.1093/bioinformatics/bty560
    [10]
    Cheng DQ, Piel WH. 2018. The origins of the psechridae: web-building lycosoid spiders. Molecular Phylogenetics and Evolution, 125: 213−219. doi: 10.1016/j.ympev.2018.03.035
    [11]
    Chiara V, Ramon Portugal F, Jeanson R. 2019. Social intolerance is a consequence, not a cause, of dispersal in spiders. PLoS Biology, 17(7): e3000319. doi: 10.1371/journal.pbio.3000319
    [12]
    Cremer S, Pull CD, Fürst MA. 2018. Social immunity: emergence and evolution of colony-level disease protection. Annual Review of Entomology, 63: 105−123. doi: 10.1146/annurev-ento-020117-043110
    [13]
    Elbroch LM, Levy M, Lubell M, Quigley H, Caragiulo A. 2017. Adaptive social strategies in a solitary carnivore. Science Advances, 3(10): e1701218. doi: 10.1126/sciadv.1701218
    [14]
    Evans TA. 1998. Factors influencing the evolution of social behaviour in Australian crab spiders (Araneae: Thomisidae). Biological Journal of the Linnean Society, 63(2): 205−219. doi: 10.1111/j.1095-8312.1998.tb01514.x
    [15]
    Fernández R, Kallal RJ, Dimitrov D, Ballesteros JA, Arnedo MA, Giribet G, et al. 2018. Phylogenomics, diversification dynamics, and comparative transcriptomics across the spider tree of life. Current Biology, 28(9): 1489−1497. doi: 10.1016/j.cub.2018.03.064
    [16]
    Fischman BJ, Woodard SH, Robinson GE. 2011. Molecular evolutionary analyses of insect societies. Proceedings of the National Academy of Sciences of the United States of America, 108(S2): 10847−10854.
    [17]
    Fu LM, Niu BF, Zhu ZW, Wu ST, Li WZ. 2012. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics, 28(23): 3150−3152. doi: 10.1093/bioinformatics/bts565
    [18]
    Gilbert C, McCafferty D, Le Maho Y, Martrette JM, Giroud S, Blanc S, et al. 2010. One for all and all for one: the energetic benefits of huddling in endotherms. Biological Reviews, 85(3): 545−569.
    [19]
    Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29(7): 644−652. doi: 10.1038/nbt.1883
    [20]
    Guevara J, Avilés L. 2015. Ecological predictors of spider sociality in the Americas. Global Ecology and Biogeography, 24(10): 1181−1191. doi: 10.1111/geb.12342
    [21]
    Hamilton WD. 1971. Geometry for the selfish herd. Journal of Theoretical Biology, 31(2): 295−311. doi: 10.1016/0022-5193(71)90189-5
    [22]
    Huang DW, Sherman BT, Lempicki RA. 2009. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics resources. Nature Protocols, 4(1): 44−57. doi: 10.1038/nprot.2008.211
    [23]
    Kapheim KM, Pan HL, Li C, Salzberg SL, Puiu D, Magoc T, et al. 2015. Genomic signatures of evolutionary transitions from solitary to group living. Science, 348(6239): 1139−1143. doi: 10.1126/science.aaa4788
    [24]
    Kim KW. 2000. Dispersal behaviour in a subsocial spider: group conflict and the effect of food availability. Behavioral Ecology and Sociobiology, 48(3): 182−187. doi: 10.1007/s002650000216
    [25]
    Korb J, Heinze J. 2016. Major hurdles for the evolution of sociality. Annual Review of Entomology, 61: 297−316. doi: 10.1146/annurev-ento-010715-023711
    [26]
    Kowalczyk A, Meyer WK, Partha R, Mao WG, Clark NL, Chikina M. 2019. RERconverge: an R package for associating evolutionary rates with convergent traits. Bioinformatics, 35(22): 4815−4817. doi: 10.1093/bioinformatics/btz468
    [27]
    Krafft B, Horel A, Julita JM. 1986. Influence of food supply on the duration of the gregarious phase of a maternal-social spider, Coelotes terrestris (Araneae, Agelenidae). Journal of Arachnology, 14(2): 219−226.
    [28]
    Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, et al. 2004. The role of autophagy during the early neonatal starvation period. Nature, 432(7020): 1032−1036. doi: 10.1038/nature03029
    [29]
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. 2009. The sequence alignment/map format and SAMtools. Bioinformatics, 25(16): 2078−2079. doi: 10.1093/bioinformatics/btp352
    [30]
    Libbrecht R, Oxley PR, Kronauer DJC. 2018. Clonal raider ant brain transcriptomics identifies candidate molecular mechanisms for reproductive division of labor. BMC Biology, 16(1): 89. doi: 10.1186/s12915-018-0558-8
    [31]
    Lin YC, Li SQ. 2008. Description on a new Philoponella species (Araneae, Uloboridae), the first record of social spiders from China. Acta Zootaxonomica Sinica, 33(2): 260−263.
    [32]
    Liu SL, Aagaard A, Bechsgaard J, Bilde T. 2019. DNA methylation patterns in the social spider, Stegodyphus dumicola. Genes, 10(2): 137. doi: 10.3390/genes10020137
    [33]
    Löytynoja A, Goldman N. 2005. An algorithm for progressive multiple alignment of sequences with insertions. Proceedings of the National Academy of Sciences of the United States of America, 102(30): 10557−10562. doi: 10.1073/pnas.0409137102
    [34]
    Lubin YD. 1974. Adaptive advantages and the evolution of colony formation in Cyrtophora (Araneae: Araneidae). Zoological Journal of the Linnean Society, 54(4): 321−339. doi: 10.1111/j.1096-3642.1974.tb00806.x
    [35]
    Macdonald DW. 1983. The ecology of carnivore social behaviour. Nature, 301(5899): 379−384. doi: 10.1038/301379a0
    [36]
    Majer M, Svenning JC, Bilde T. 2013. Habitat productivity constrains the distribution of social spiders across continents - case study of the genus Stegodyphus. Frontiers in Zoology, 10(1): 9. doi: 10.1186/1742-9994-10-9
    [37]
    Maynard Smith J, Szathmáry E. 1995. The Major Transitions in Evolution. Oxford: Oxford University Press.
    [38]
    Michener CD. 1958. The evolution of social behavior in bees. Proceedings of the Tenth International Congress of Entomology.
    [39]
    Michener CD. 1969. Comparative social behavior of bees. Annual Review of Entomology, 14: 299−342. doi: 10.1146/annurev.en.14.010169.001503
    [40]
    Mirarab S, Reaz R, Bayzid MS, Zimmermann T, Swenson MS, Warnow T. 2014. ASTRAL: genome-scale coalescent-based species tree estimation. Bioinformatics, 30(17): i541−i548. doi: 10.1093/bioinformatics/btu462
    [41]
    Mizushima N. 2007. Autophagy: process and function. Genes & Development, 21(22): 2861−2873.
    [42]
    Moreno-Hagelsieb G, Latimer K. 2008. Choosing BLAST options for better detection of orthologs as reciprocal best hits. Bioinformatics, 24(3): 319−324. doi: 10.1093/bioinformatics/btm585
    [43]
    Nentwig W. 1985. Social spiders catch larger prey: a study of Anelosimus eximius (Araneae: Theridiidae). Behavioral Ecology and Sociobiology, 17(1): 79−85. doi: 10.1007/BF00299433
    [44]
    Penn O, Privman E, Ashkenazy H, Landan G, Graur D, Pupko T. 2010. GUIDANCE: a web server for assessing alignment confidence scores. Nucleic Acids Research, 38(S2): W23−W28.
    [45]
    Powers KS, Avilés L. 2007. The role of prey size and abundance in the geographical distribution of spider sociality. Journal of Animal Ecology, 76(5): 995−1003. doi: 10.1111/j.1365-2656.2007.01267.x
    [46]
    Rehan SM, Toth AL. 2015. Climbing the social ladder: the molecular evolution of sociality. Trends in Ecology & Evolution, 30(7): 426−433.
    [47]
    Riechert SE, Roeloffs R, Echternacht AC. 1986. The ecology of the cooperative spider Agelena consociata in equatorial Africa (Araneae, Agelenidae). The Journal of Arachnology, 14(2): 175−191.
    [48]
    Riechert SE. 1985. Why do some spiders cooperate? Agelena consociata, a case study. The Florida Entomologist, 68(1): 105−116. doi: 10.2307/3494333
    [49]
    Rubenstein DR, Lovette IJ. 2007. Temporal environmental variability drives the evolution of cooperative breeding in birds. Current Biology, 17(16): 1414−1419. doi: 10.1016/j.cub.2007.07.032
    [50]
    Rypstra AL. 1983. The importance of food and space in limiting web-spider densities; a test using field enclosures. Oecologia, 59(2-3): 312−316. doi: 10.1007/BF00378855
    [51]
    Rypstra AL. 1986. High prey abundance and a reduction in cannibalism: the first step to sociality in spiders (Arachnida). The Journal of Arachnology, 14(2): 193−200.
    [52]
    Rypstra AL. 1989. Foraging success of solitary and aggregated spiders: insights into flock formation. Animal Behaviour, 37: 274−281. doi: 10.1016/0003-3472(89)90116-4
    [53]
    Rypstra AL. 1990. Prey capture and feeding efficiency of social and solitary spiders: a comparison. Acta Zoologica Fennica, 190: 339−343.
    [54]
    Sandidge JS. 2003. Scavenging by brown recluse spiders. Nature, 426(6962): 30.
    [55]
    Sanggaard KW, Bechsgaard JS, Fang XD, Duan JJ, Dyrlund TF, Gupta V, et al. 2014. Spider genomes provide insight into composition and evolution of venom and silk. Nature Communications, 5: 3765. doi: 10.1038/ncomms4765
    [56]
    Sato T, Yamanishi Y, Kanehisa M, Toh H. 2005. The inference of protein-protein interactions by co-evolutionary analysis is improved by excluding the information about the phylogenetic relationships. Bioinformatics, 21(17): 3482−3489. doi: 10.1093/bioinformatics/bti564
    [57]
    Schneider JM. 2002. Reproductive state and care giving in Stegodyphus (Araneae: Eresidae) and the implications for the evolution of sociality. Animal Behaviour, 63(4): 649−658. doi: 10.1006/anbe.2001.1961
    [58]
    Settepani V, Bechsgaard J, Bilde T. 2016. Phylogenetic analysis suggests that sociality is associated with reduced effectiveness of selection. Ecology and Evolution, 6(2): 469−477. doi: 10.1002/ece3.1886
    [59]
    Settepani V, Schou MF, Greve M, Grinsted L, Bechsgaard J, Bilde T. 2017. Evolution of sociality in spiders leads to depleted genomic diversity at both population and species levels. Molecular Ecology, 26(16): 4197−4210. doi: 10.1111/mec.14196
    [60]
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11): 2498−2504. doi: 10.1101/gr.1239303
    [61]
    Shear WA. 1970. The evolution of social phenomena in spiders. Bulletin of the British Arachnological Society, 1(5): 65−76.
    [62]
    Smith MD, Wertheim JO, Weaver S, Murrell B, Scheffler K, Kosakovsky Pond SL. 2015. Less is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Molecular Biology and Evolution, 32(5): 1342−1353. doi: 10.1093/molbev/msv022
    [63]
    Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9): 1312−1313. doi: 10.1093/bioinformatics/btu033
    [64]
    Storey JD, Tibshirani R. 2003. Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences of the United States of America, 100(16): 9440−9445. doi: 10.1073/pnas.1530509100
    [65]
    Tong C, Najm GM, Pinter-Wollman N, Pruitt JN, Linksvayer TA. 2020. Comparative genomics identifies putative signatures of sociality in spiders. Genome Biology and Evolution, 12(3): 122−133. doi: 10.1093/gbe/evaa007
    [66]
    Toyama M. 1999. Adaptive advantages of maternal care and matriphagy in a foliage spider, Chiracanthium japonicum (Araneae: Coubionidae). Journal of Ethology, 17(1): 33−39. doi: 10.1007/BF02769295
    [67]
    Uetz GW. 1988. Group forating in colonial web-building spiders: evidence for risk-sensitivity. Behavioral Ecology and Sociobiology, 22(4): 265−270. doi: 10.1007/BF00299841
    [68]
    Uetz GW. 1989. The "ricochet effect" and prey capture in colonial spiders. Oecologia, 81(2): 154−159. doi: 10.1007/BF00379799
    [69]
    Vanthournout B, Greve M, Bruun A, Bechsgaard J, Overgaard J, Bilde T. 2016. Benefits of group living include increased feeding efficiency and lower mass loss during desiccation in the social and inbreeding spider Stegodyphus dumicola. Frontiers in Physiology, 7: 18.
    [70]
    Ward P, Zahavi A. 1973. The importance of certain assemblages of birds as “information-centres” for food-finding. Ibis, 115(4): 517−534.
    [71]
    Ward PI. 1986. Prey availability increases less quickly than nest size in the social spider Stegodyphus mimosarum. Behaviour, 97(3-4): 213−225. doi: 10.1163/156853986X00603
    [72]
    Whitehouse MEA, Lubin Y. 2005. The functions of societies and the evolution of group living: spider societies as a test case. Biological Reviews, 80(3): 347−361. doi: 10.1017/S1464793104006694
    [73]
    Wilson EO. 1971. The Insect Societies. Cambridge: Harvard University Press.
    [74]
    Wise DH. 2006. Cannibalism, food limitation, intraspecific competition, and the regulation of spider populations. Annual Review of Entomology, 51: 441−465. doi: 10.1146/annurev.ento.51.110104.150947
    [75]
    Woodard SH, Fischman BJ, Venkat A, Hudson ME, Varala K, Cameron SA, et al. 2011. Genes involved in convergent evolution of eusociality in bees. Proceedings of the National Academy of Sciences of the United States of America, 108(18): 7472−7477. doi: 10.1073/pnas.1103457108
    [76]
    WSC. [2021-01-30]. World Spider Catalog Version 22.0. Natural History Museum Bern. http://wsc.nmbe.ch.
    [77]
    Yang ZG. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24(8): 1586−1591. doi: 10.1093/molbev/msm088
    [78]
    Yip EC, Rayor LS. 2014. Maternal care and subsocial behaviour in spiders. Biological Reviews, 89(2): 427−449. doi: 10.1111/brv.12060
    [79]
    Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, et al. 2018. Ensembl 2018. Nucleic Acids Research, 46(D1): D754−D761. doi: 10.1093/nar/gkx1098
    [80]
    Zhang J, Kumar S. 1997. Detection of convergent and parallel evolution at the amino acid sequence level. Molecular Biology and Evolution, 14(5): 527−536. doi: 10.1093/oxfordjournals.molbev.a025789
    [81]
    Zhang JZ, Nielsen R, Yang ZH. 2005. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Molecular Biology and Evolution, 22(12): 2472−2479. doi: 10.1093/molbev/msi237
    [82]
    Zou ZT, Zhang JZ. 2015. Are convergent and parallel amino acid substitutions in protein evolution more prevalent than neutral expectations?. Molecular Biology and Evolution, 32(8): 2085−2096. doi: 10.1093/molbev/msv091
  • ZR-2020-281Supplementary.zip
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (614) PDF downloads(77) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return