Volume 41 Issue 6
Nov.  2020
Turn off MathJax
Article Contents
Hao Dai, Qi-Qi Jin, Lin Li, Luo-Nan Chen. Reconstructing gene regulatory networks in single-cell transcriptomic data analysis. Zoological Research, 2020, 41(6): 599-604. doi: 10.24272/j.issn.2095-8137.2020.215
Citation: Hao Dai, Qi-Qi Jin, Lin Li, Luo-Nan Chen. Reconstructing gene regulatory networks in single-cell transcriptomic data analysis. Zoological Research, 2020, 41(6): 599-604. doi: 10.24272/j.issn.2095-8137.2020.215

Reconstructing gene regulatory networks in single-cell transcriptomic data analysis

doi: 10.24272/j.issn.2095-8137.2020.215
Funds:  This study was supported by the National Key Research and Development Program of China (2017YFA0505500), Strategic Priority Research Program of the Chinese Academy of Sciences (XDB38040400), National Science Foundation of China (31771476 and 31930022), and Shanghai Municipal Science and Technology Major Project (2017SHZDZX01)
More Information
  • Corresponding author: E-mail: lnchen@sibs.ac.cn
  • Received Date: 2020-08-03
  • Accepted Date: 2020-10-20
  • Available Online: 2020-10-21
  • Publish Date: 2020-11-18
  • Gene regulatory networks play pivotal roles in our understanding of biological processes/mechanisms at the molecular level. Many studies have developed sample-specific or cell-type-specific gene regulatory networks from single-cell transcriptomic data based on a large amount of cell samples. Here, we review the state-of-the-art computational algorithms and describe various applications of gene regulatory networks in biological studies.
  • loading
  • [1]
    Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. 2017. SCENIC: single-cell regulatory network inference and clustering. Nature Methods, 14(11): 1083−1086. doi:  10.1038/nmeth.4463
    Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. 2018. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nature Biotechnology, 36(5): 411−420. doi:  10.1038/nbt.4096
    Chan TE, Stumpf MPH, Babtie AC. 2017. Gene regulatory network inference from single-cell data using multivariate information measures. Cell Systems, 5(3): 251−267.e3. doi:  10.1016/j.cels.2017.08.014
    Chen LN, Wang RQ, Li CG, Aihara K. 2010. Modeling Biomolecular Networks in Cells: Structures and Dynamics. London: Springer-Verlag.
    Chen LN, Wang RS, Zhang XS. 2009. Biomolecular Networks: Methods and Applications in Systems Biology. New York: John Wiley & Sons.
    Chen SN, Mar JC. 2018. Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data. BMC Bioinformatics, 19(1): 232. doi:  10.1186/s12859-018-2217-z
    Dai H, Li L, Zeng T, Chen LN. 2019. Cell-specific network constructed by single-cell RNA sequencing data. Nucleic Acids Research, 47(11): e62. doi:  10.1093/nar/gkz172
    Eberwine J, Sul JY, Bartfai T, Kim J. 2014. The promise of single-cell sequencing. Nature Methods, 11(1): 25−27. doi:  10.1038/nmeth.2769
    Elyanow R, Dumitrascu B, Engelhardt BE, Raphael BJ. 2020. netNMF-sc: leveraging gene-gene interactions for imputation and dimensionality reduction in single-cell expression analysis. Genome Research, 30(2): 195−204. doi:  10.1101/gr.251603.119
    Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, et al. 2007. Large-scale mapping and validation of escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biology, 5(1): e8. doi:  10.1371/journal.pbio.0050008
    Gao NP, Ud-Dean SMM, Gandrillon O, Gunawan R. 2018. SINCERITIES: inferring gene regulatory networks from time-stamped single cell transcriptional expression profiles. Bioinformatics, 34(2): 258−266. doi:  10.1093/bioinformatics/btx575
    Garg A, Di Cara A, Xenarios I, Mendoza L, De Micheli G. 2008. Synchronous versus asynchronous modeling of gene regulatory networks. Bioinformatics, 24(17): 1917−1925. doi:  10.1093/bioinformatics/btn336
    Harly C, Kenney D, Ren G, Lai BB, Raabe T, Yang Q, et al. 2019. The transcription factor TCF-1 enforces commitment to the innate lymphoid cell lineage. Nature Immunology, 20(9): 1150−1160. doi:  10.1038/s41590-019-0445-7
    Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. 2010. Inferring regulatory networks from expression data using tree-based methods. PLoS One, 5(9): e12776. doi:  10.1371/journal.pone.0012776
    Huynh-Thu VA, Sanguinetti G. 2015. Combining tree-based and dynamical systems for the inference of gene regulatory networks. Bioinformatics, 31(10): 1614−1622. doi:  10.1093/bioinformatics/btu863
    Iacono G, Massoni-Badosa R, Heyn H. 2019. Single-cell transcriptomics unveils gene regulatory network plasticity. Genome Biology, 20(1): 110. doi:  10.1186/s13059-019-1713-4
    Kim S. 2015. ppcor: an R package for a fast calculation to semi-partial correlation coefficients. Communications for Statistical Applications and Methods, 22(6): 665−674. doi:  10.5351/CSAM.2015.22.6.665
    Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 9(1): 559. doi:  10.1186/1471-2105-9-559
    Li L, Dai H, Fang ZY, Chen LN. 2020. CCSN: single Cell RNA sequencing data analysis by conditional cell-specific network. bioRxiv. doi:  10.1101/2020.01.25.919829.
    Li XY, Chen WZ, Chen Y, Zhang XG, Gu J, Zhang MQ. 2017. Network embedding-based representation learning for single cell RNA-seq data. Nucleic Acids Research, 45(19): e166. doi:  10.1093/nar/gkx750
    Lim CY, Wang HG, Woodhouse S, Piterman N, Wernisch L, Fisher J, et al. 2016. BTR: training asynchronous Boolean models using single-cell expression data. BMC Bioinformatics, 17(1): 355. doi:  10.1186/s12859-016-1235-y
    Liu JL, Liu S, Gao HY, Han L, Chu XN, Sheng Y, et al. 2020. Genome-wide studies reveal the essential and opposite roles of ARID1A in controlling human cardiogenesis and neurogenesis from pluripotent stem cells. Genome Biology, 21(1): 169. doi:  10.1186/s13059-020-02082-4
    Matsumoto H, Kiryu H, Furusawa C, Ko MSH, Ko SBH, Gouda N, et al. 2017. SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation. Bioinformatics, 33(15): 2314−2321. doi:  10.1093/bioinformatics/btx194
    Mimitou EP, Cheng A, Montalbano A, Hao S, Stoeckius M, Legut M, et al. 2019. Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells. Nature Methods, 16(5): 409−412. doi:  10.1038/s41592-019-0392-0
    Moerman T, Santos SA, González-Blas CB, Simm J, Moreau Y, Aerts J, et al. 2019. GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks. Bioinformatics, 35(12): 2159−2161. doi:  10.1093/bioinformatics/bty916
    Moignard V, Woodhouse S, Haghverdi L, Lilly AJ, Tanaka Y, Wilkinson AC, et al. 2015. Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nature Biotechnology, 33(3): 269−276. doi:  10.1038/nbt.3154
    Pina C, Teles J, Fugazza C, May G, Wang DP, Guo YP, et al. 2015. Single-cell network analysis identifies DDIT3 as a nodal lineage regulator in hematopoiesis. Cell Reports, 11(10): 1503−1510. doi:  10.1016/j.celrep.2015.05.016
    Pratapa A, Jalihal AP, Law JN, Bharadwaj A, Murali TM. 2020. Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data. Nature Methods, 17(2): 147−154. doi:  10.1038/s41592-019-0690-6
    Qiu XJ, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, et al. 2017. Reversed graph embedding resolves complex single-cell trajectories. Nature Methods, 14(10): 979−982. doi:  10.1038/nmeth.4402
    Rozenblatt-Rosen O, Stubbington MJT, Regev A, Teichmann SA. 2017. The human cell atlas: from vision to reality. Nature, 550(7677): 451−453. doi:  10.1038/550451a
    Sagar, Pokrovskii M, Herman JS, Naik S, Sock E, Zeis P, et al. 2020. Deciphering the regulatory landscape of fetal and adult γδ T-cell development at single-cell resolution. The EMBO Journal, 39(13): e104159.
    Sanchez-Castillo M, Blanco D, Tienda-Luna IM, Carrion MC, Huang YF. 2018. A bayesian framework for the inference of gene regulatory networks from time and pseudo-time series data. Bioinformatics, 34(6): 964−970. doi:  10.1093/bioinformatics/btx605
    Specht AT, Li J. 2017. LEAP: constructing gene co-expression networks for single-cell RNA-sequencing data using pseudotime ordering. Bioinformatics, 33(5): 764−766.
    Stegle O, Teichmann SA, Marioni JC. 2015. Computational and analytical challenges in single-cell transcriptomics. Nature Reviews Genetics, 16(3): 133−145. doi:  10.1038/nrg3833
    Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck III WM, et al. 2019. Comprehensive integration of single-cell data. Cell, 177(7): 1888−1902.e21. doi:  10.1016/j.cell.2019.05.031
    Terfve C, Cokelaer T, Henriques D, MacNamara A, Goncalves E, Morris MK, et al. 2012. CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms. BMC Systems Biology, 6(1): 133. doi:  10.1186/1752-0509-6-133
    Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li SQ, Morse M, et al. 2014. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nature Biotechnology, 32(4): 381−386. doi:  10.1038/nbt.2859
    Van Dijk D, Sharma R, Nainys J, Yim K, Kathail P, Carr AJ, et al. 2018. Recovering gene interactions from single-cell data using data diffusion. Cell, 174(3): 716−729.e27. doi:  10.1016/j.cell.2018.05.061
    Villani AC, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, et al. 2017. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science, 356(6335): eaah4573. doi:  10.1126/science.aah4573
    Wang Y, Joshi T, Zhang XS, Xu D, Chen L. 2006. Inferring gene regulatory networks from multiple microarray datasets. Bioinformatics, 22(19): 2413−2420. doi:  10.1093/bioinformatics/btl396
    Woodhouse S, Piterman N, Wintersteiger CM, Göttgens B, Fisher J. 2018. SCNS: a graphical tool for reconstructing executable regulatory networks from single-cell genomic data. BMC Systems Biology, 12(1): 59. doi:  10.1186/s12918-018-0581-y
    Xu HL, Ang YS, Sevilla A, Lemischka IR, Ma'ayan A. 2014. Construction and validation of a regulatory network for pluripotency and self-renewal of mouse embryonic stem cells. PLoS Computational Biology, 10(8): e1003777. doi:  10.1371/journal.pcbi.1003777
    Yuan Y, Bar-Joseph Z. 2019. Deep learning for inferring gene relationships from single-cell expression data. Proceedings of the National Academy of Sciences of the United States of America, 116(52): 27151−27158. doi:  10.1073/pnas.1911536116
    Zeng T, Dai H. 2019. Single-cell RNA sequencing-based computational analysis to describe disease heterogeneity. Frontiers in Genetics, 10: 629. doi:  10.3389/fgene.2019.00629
    Zhang S, Zhao J, Lv XD, Fan JL, Lu Y, Zeng T, et al. 2020. Analysis on gene modular network reveals morphogen-directed development robustness in Drosophila. Cell Discovery, 6(1): 43. doi:  10.1038/s41421-020-0173-z
    Zhang XJ, Zhao J, Hao JK, Zhao XM, Chen LN. 2015. Conditional mutual inclusive information enables accurate quantification of associations in gene regulatory networks. Nucleic Acids Research, 43(5): e31. doi:  10.1093/nar/gku1315
    Zhao J, Zhou YW, Zhang XJ, Chen LN. 2016. Part mutual information for quantifying direct associations in networks. Proceedings of the National Academy of Sciences of the United States of America, 113(18): 5130−5135. doi:  10.1073/pnas.1522586113
  • Relative Articles

    [1] Yu Wang, Shan Gao, Yue Zhao, Chen Wei-Huang, Jun-Jie Shao, Wang Ni-Ni, Ming Li, Guang-Xian Zhou, Lei Wang, Wen-Jing Shen, Jing-Tao Xu, Wei-Dong Deng, Wen Wang, Yu-Lin Chen, Yu Jiang. Allele-specific expression and alternative splicing in horse×donkey and cattle×yak hybrids. Zoological Research, 2019, 40(4): 293-305.  doi: 10.24272/j.issn.2095-8137.2019.042
    [2] Xin-Jiang Lu, Jiong Chen. Specific function and modulation of teleost monocytes/macrophages: polarization and phagocytosis. Zoological Research, 2019, 40(3): 146-150.  doi: 10.24272/j.issn.2095-8137.2019.035
    [3] Zheng-Bo Wang, Dong-Dong Qin, Xin-Tian Hu. Engrafted newborn neurons could functionally integrate into the host neuronal network. Zoological Research, 2017, 38(1): 5-6.  doi: 10.13918/j.issn.2095-8137.2017.005
    [4] Zhen-Hua GUAN, Bei HUANG, Wen-He NING, Qing-Yong NI, Xue-Long JIANG. Proximity association in polygynous western black crested gibbons (Nomascus concolor jingdongensis): network structure and seasonality. Zoological Research, 2013, 34(E1): 561-E.  doi: 10.3724/SP.J.1141.2013.E01E01
    [5] Peng ZHANG. Social network analysis of animal behavioral ecology: a cross-discipline approach. Zoological Research, 2013, 34(6): 651-658.  doi: 10.11813/j.issn.0254-5853.2013.6.0651
    [6] Yiwen WANG, Jinqiang YUAN, Xin GAO, Xianyu YANG*. Stage-specific appearance of cytoplasmic microtubules around the surviving nuclei during the third prezygotic division of Paramecium. Zoological Research, 2012, 33(E5-6): 98-103.  doi: 10.3724/SP.J.1141.2012.E05-06E98
    [7] WU Kun, XU Lin, HUANG Jing-fei. Role of Specific Synaptic Plasticity Interfering Peptides in the Expression of Morphine Induced Conditioned Place Preference in Mice  . Zoological Research, 2009, 30(4): 389-395.  doi: 10.3724/SP.J.1141.2009.04389
    [8] YI Bin, CHANG Hong, CAO Yi. Improvement of Methods for Total RNA Extraction from Hepatocarcinoma Tissues and Cell Lines and Comparison of Reverse Transcription and cDNA Cloning Strategies. Zoological Research, 2009, 30(5): 520-526.  doi: 10.3724/SP.J.1141.2009.05520
    [9] PAN Ru-liang. Dental Variation Among Asian Colobines, with Specific Reference to the Macaques on the Same Continent. Zoological Research, 2007, 28(6): 569-579.
    [10] ZHOU Li, WANG Yang, GUI Jian-fang , *. Fish-Specific Genome Duplication. Zoological Research, 2006, 27(5): 525-532.
    [11] WANG Hui-chun, TAI Fa-dao, LIAN Yi. Age-specific Changes in Estrogen Receptors α in Testis and Epididymis of Mandarin Voles (Microtus mandarinus). Zoological Research, 2005, 26(4): 435-441.
    [12] ZHAO Tong-biao, ZHAO Xin-quan, CHANG Zhi-jie, SUN Ping, XU Shi-xiao, ZHAO Wei. Tissue Specific Expression of Plateau Pikas (Ochotona curzoniae) HIF-1α mRNA Under Normal Oxygen. Zoological Research, 2004, 25(2): 132-136.
    [13] ZHANG Ke, YE Zhen-qing, QIAO Chuan-ling, LIN Li-feng, CAI Song-wu. Resistant Level,Frequency of Non-specific Esterases and Genetic Differentiation in Mosquitoes Culex pipiens quinquefasciatus in Three Cities of Guangdong. Zoological Research, 2003, 24(5): 367-372.
    [14] YANG Zhen-Yun, GU Fu-Kang, NI Bing, JI Ling-Mei. Intermediate-Type Filament-LaminaNuclear Matrix of Vegetative Cell and Resting Cyst in Pseudourostyla cristata. Zoological Research, 2001, 22(1): 83-84.
    [15] ZHENG De-shu. Apoptosis and Programmed Cell Death. Zoological Research, 2000, 21(1): 17-22.
    [16] GUAN Guan-xun. Taxonomic Studies on the Infra-Specific Forms of Harpactes erythrocephalus Within China. Zoological Research, 1986, 7(4): 391-392.
    [17] CUI Gui-hua, CHU Xin-luo. Systematic Status of the Genus Luciocyprinus and its Specific Differentiation (Pisces:Cyprinidae). Zoological Research, 1986, 7(1): 79-84.
    [18] XU Yi-sheng, PHILIPPE Brulet. Cytoplasmic Distribution of A Mouse Embryonal Carcinoma Cell Specific RNA,MS3 RNA. Zoological Research, 1983, 4(3): 295-300.
    [19] LI Ling-yan. Cell Theory. Zoological Research, 1982, 3(zk): 373-374.
    [20] GUO Ren, TANG En-hua, JIANG Yun-quan, WEN Yu-ling, LU Feng-ming, LIN Jie-yan. Hybrid Cell Lines Secreting Monoclonal Antibodies Against Poliovirus Type 2. Zoological Research, 1982, 3(2): 201-208.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (359) PDF downloads(147) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint