Volume 41 Issue 6
Nov.  2020
Turn off MathJax
Article Contents
Hui-Juan Li, Xi Su, Lu-Wen Zhang, Chu-Yi Zhang, Lu Wang, Wen-Qiang Li, Yong-Feng Yang, Lu-Xian Lv, Ming Li, Xiao Xiao. Transcriptomic analyses of humans and mice provide insights into depression. Zoological Research, 2020, 41(6): 632-643. doi: 10.24272/j.issn.2095-8137.2020.174
Citation: Hui-Juan Li, Xi Su, Lu-Wen Zhang, Chu-Yi Zhang, Lu Wang, Wen-Qiang Li, Yong-Feng Yang, Lu-Xian Lv, Ming Li, Xiao Xiao. Transcriptomic analyses of humans and mice provide insights into depression. Zoological Research, 2020, 41(6): 632-643. doi: 10.24272/j.issn.2095-8137.2020.174

Transcriptomic analyses of humans and mice provide insights into depression

doi: 10.24272/j.issn.2095-8137.2020.174
#Authors contributed equally to this work
Funds:  This study was supported by the Chinese Academy of Sciences (CAS) Western Light Program and CAS Youth Innovation Promotion Association to X.X. and the CAS Pioneer Hundred Talents Program and 1000 Young Talents Program to M.L.
More Information
  • Accumulating studies have been conducted to identify risk genes and relevant biological mechanisms underlying major depressive disorder (MDD). In particular, transcriptomic analyses in brain regions engaged in cognitive and emotional processes, e.g., the dorsolateral prefrontal cortex (DLPFC), have provided essential insights. Based on three independent DLPFC RNA-seq datasets of 79 MDD patients and 75 healthy controls, we performed differential expression analyses using two alternative approaches for cross-validation. We also conducted transcriptomic analyses in mice undergoing chronic variable stress (CVS) and chronic social defeat stress (CSDS). We identified 12 differentially expressed genes (DEGs) through both analytical methods in MDD patients, the majority of which were also dysregulated in stressed mice. Notably, the mRNA level of the immediate early gene FOS (Fos proto-oncogene) was significantly decreased in both MDD patients and CVS-exposed mice, and CSDS-susceptible mice exhibited a greater reduction in Fos expression compared to resilient mice. These findings suggest the potential key roles of this gene in the pathogenesis of MDD related to stress exposure. Altered transcriptomes in the DLPFC of MDD patients might be, at least partially, the result of stress exposure, supporting that stress is a primary risk factor for MDD.
  • #Authors contributed equally to this work
  • loading
  • [1]
    Adrien J. 2002. Neurobiological bases for the relation between sleep and depression. Sleep Medicine Reviews, 6(5): 341−351. doi: 10.1053/smrv.2001.0200
    Bagot RC, Cates HM, Purushothaman I, Lorsch ZS, Walker DM, Wang JS, et al. 2016. Circuit-wide transcriptional profiling reveals brain region-specific gene networks regulating depression susceptibility. Neuron, 90(5): 969−983. doi: 10.1016/j.neuron.2016.04.015
    Bagot RC, Cates HM, Purushothaman I, Vialou V, Heller EA, Yieh L, et al. 2017. Ketamine and Imipramine reverse transcriptional signatures of susceptibility and induce resilience-specific gene expression profiles. Biological Psychiatry, 81(4): 285−295. doi: 10.1016/j.biopsych.2016.06.012
    Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15): 2114−2120. doi: 10.1093/bioinformatics/btu170
    Cahill KM, Huo ZG, Tseng GC, Logan RW, Seney ML. 2018. Improved identification of concordant and discordant gene expression signatures using an updated rank-rank hypergeometric overlap approach. Scientific Reports, 8(1): 9588. doi: 10.1038/s41598-018-27903-2
    Cai X, Yang ZH, Li HJ, Xiao X, Li M, Chang H. 2020. A human-specific schizophrenia risk tandem repeat affects alternative splicing of a human-unique isoform AS3MTd2d3 and mushroom dendritic spine density. Schizophrenia Bulletin. doi: 10.1093/schbul/sbaa098.
    Charlesworth JC, Curran JE, Johnson MP, Göring HH, Dyer TD, Diego VP, et al. 2010. Transcriptomic epidemiology of smoking: the effect of smoking on gene expression in lymphocytes. BMC Medical Genomics, 3: 29. doi: 10.1186/1755-8794-3-29
    Cheng Y, Sun M, Chen L, Li YJ, Lin L, Yao B, et al. 2018. Ten-eleven translocation proteins modulate the response to environmental stress in mice. Cell Reports, 25(11): 3194−3203. doi: 10.1016/j.celrep.2018.11.061
    Covington III HE, Lobo MK, Maze I, Vialou V, Hyman JM, Zaman S, et al. 2010. Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. Journal of Neuroscience, 30(48): 16082−16090. doi: 10.1523/JNEUROSCI.1731-10.2010
    Curran T, Franza BR Jr. 1988. Fos and Jun: the AP-1 connection. Cell, 55(3): 395−397. doi: 10.1016/0092-8674(88)90024-4
    Donahue RJ, Muschamp JW, Russo SJ, Nestler EJ, Carlezon WA Jr. 2014. Effects of striatal ΔFosB overexpression and ketamine on social defeat stress-induced anhedonia in mice. Biological Psychiatry, 76(7): 550−558. doi: 10.1016/j.biopsych.2013.12.014
    Duman RS, Aghajanian GK. 2012. Synaptic dysfunction in depression: potential therapeutic targets. Science, 338(6103): 68−72. doi: 10.1126/science.1222939
    Duman RS, Aghajanian GK, Sanacora G, Krystal JH. 2016. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nature Medicine, 22(3): 238−249. doi: 10.1038/nm.4050
    Edwards SL, Beesley J, French JD, Dunning AM. 2013. Beyond GWASs: illuminating the dark road from association to function. The American Journal of Human Genetics, 93(5): 779−797. doi: 10.1016/j.ajhg.2013.10.012
    Fleischmann A, Hvalby O, Jensen V, Strekalova T, Zacher C, Layer LE, et al. 2003. Impaired long-term memory and NR2A-type NMDA receptor-dependent synaptic plasticity in mice lacking c-Fos in the CNS. Journal of Neuroscience, 23(27): 9116−9122. doi: 10.1523/JNEUROSCI.23-27-09116.2003
    Forrest MP, Parnell E, Penzes P. 2018. Dendritic structural plasticity and neuropsychiatric disease. Nature Reviews Neuroscience, 19(4): 215−234. doi: 10.1038/nrn.2018.16
    French JD, Edwards SL. 2020. The role of noncoding variants in heritable disease. Trends in Genetics. doi: 10.1016/j.tig.2020.07.004.
    Gallo FT, Katche C, Morici JF, Medina JH, Weisstaub NV. 2018. Immediate early genes, memory and psychiatric disorders: focus on c-Fos, Egr1 and Arc. Frontiers in Behavioral Neuroscience, 12: 79. doi: 10.3389/fnbeh.2018.00079
    Gandal MJ, Haney JR, Parikshak NN, Leppa V, Ramaswami G, Hartl C, et al. 2018a. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science, 359(6376): 693−697. doi: 10.1126/science.aad6469
    Gandal MJ, Zhang P, Hadjimichael E, Walker RL, Chen C, Liu S, et al. 2018b. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science, 362(6420): eaat8127. doi: 10.1126/science.aat8127
    Gerring ZF, Gamazon ER, Derks EM. 2019. A gene co-expression network-based analysis of multiple brain tissues reveals novel genes and molecular pathways underlying major depression. PLoS Genetics, 15(7): e1008245. doi: 10.1371/journal.pgen.1008245
    Gotlib IH, Joormann J. 2010. Cognition and depression: current status and future directions. Annual Review of Clinical Psychology, 6: 285−312. doi: 10.1146/annurev.clinpsy.121208.131305
    Guzowski JF, McNaughton BL, Barnes CA, Worley PF. 1999. Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nature Neuroscience, 2(12): 1120−1124. doi: 10.1038/16046
    Hasin DS, Goodwin RD, Stinson FS, Grant BF. 2005. Epidemiology of major depressive disorder: results from the National Epidemiologic Survey on Alcoholism and Related Conditions. Archices of General Psychiatry, 62(10): 1097−1106. doi: 10.1001/archpsyc.62.10.1097
    Hennessy MB, Deak T, Schiml-Webb PA. 2010. Early attachment-figure separation and increased risk for later depression: potential mediation by proinflammatory processes. Neuroscience & Biobehavioral Reviews, 34(6): 782−790.
    Hodes GE, Pfau ML, Purushothaman I, Ahn HF, Golden SA, Christoffel DJ, et al. 2015. Sex differences in nucleus accumbens transcriptome profiles associated with susceptibility versus resilience to subchronic variable stress. Journal of Neuroscience, 35(50): 16362−16376. doi: 10.1523/JNEUROSCI.1392-15.2015
    Hodges TE, Green MR, Simone JJ, McCormick CM. 2014. Effects of social context on endocrine function and Zif268 expression in response to an acute stressor in adolescent and adult rats. International Journal of Developmental Neuroscience, 35(1): 25−34. doi: 10.1016/j.ijdevneu.2014.03.001
    Howard DM, Adams MJ, Clarke TK, Hafferty JD, Gibson J, Shirali M, et al. 2019. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nature Neuroscience, 22(3): 343−352. doi: 10.1038/s41593-018-0326-7
    Jansen R, Batista S, Brooks AI, Tischfield JA, Willemsen G, van Grootheest G, et al. 2014. Sex differences in the human peripheral blood transcriptome. BMC Genomics, 15: 33. doi: 10.1186/1471-2164-15-33
    Jansen R, Penninx BWJH, Madar V, Xia K, Milaneschi Y, Hottenga JJ, et al. 2016. Gene expression in major depressive disorder. Molecular Psychiatry, 21(3): 339−347. doi: 10.1038/mp.2015.57
    Kang HJ, Voleti B, Hajszan T, Rajkowska G, Stockmeier CA, Licznerski P, et al. 2012. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nature Medicine, 18(9): 1413−1417. doi: 10.1038/nm.2886
    Kanton S, Boyle MJ, He ZS, Santel M, Weigert A, Sanchís-Calleja F, et al. 2019. Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature, 574(7778): 418−422. doi: 10.1038/s41586-019-1654-9
    Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods, 12(4): 357−360. doi: 10.1038/nmeth.3317
    Kim S, Hwang Y, Webster MJ, Lee D. 2016. Differential activation of immune/inflammatory response-related co-expression modules in the hippocampus across the major psychiatric disorders. Molecular Psychiatry, 21(3): 376−385. doi: 10.1038/mp.2015.79
    Labonté B, Engmann O, Purushothaman I, Menard C, Wang JS, Tan CF, et al. 2017. Sex-specific transcriptional signatures in human depression. Nature Medicine, 23(9): 1102−1111. doi: 10.1038/nm.4386
    Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 9: 559. doi: 10.1186/1471-2105-9-559
    Laoutidis ZG, Luckhaus C. 2015. The Liptak-Stouffer test for meta-analyses. Biological Psychiatry, 77(1): e1−e2. doi: 10.1016/j.biopsych.2013.11.033
    Leday GGR, Vértes PE, Richardson S, Greene JR, Regan T, Khan S, et al. 2018. Replicable and coupled changes in innate and adaptive immune gene expression in two case-control studies of blood microarrays in major depressive disorder. Biological Psychiatry, 83(1): 70−80. doi: 10.1016/j.biopsych.2017.01.021
    Leek JT, Johnson WE, Parker HS, Fertig EJ, Jaffe AE, Storey JD, et al. 2020. sva: Surrogate Variable Analysis. R package version 3.34.0.
    Le-Niculescu H, Kurian SM, Yehyawi N, Dike C, Patel SD, Edenberg HJ, et al. 2009. Identifying blood biomarkers for mood disorders using convergent functional genomics. Molecular Psychiatry, 14(2): 156−174. doi: 10.1038/mp.2008.11
    Li HJ, Chang H, Song XQ, Liu WP, Li LY, Wang L, et al. 2019. Integrative analyses of major histocompatibility complex loci in the genome-wide association studies of major depressive disorder. Neuropsychopharmacology, 44(9): 1552−1561. doi: 10.1038/s41386-019-0346-3
    Li HJ, Qu N, Hui L, Cai X, Zhang CY, Zhong BL, et al. 2020a. Further confirmation of netrin 1 receptor (DCC) as a depression risk gene via integrations of multi-omics data. Translational Psychiatry, 10(1): 98. doi: 10.1038/s41398-020-0777-y
    Li JZ, Bunney BG, Meng F, Hagenauer MH, Walsh DM, Vawter MP, et al. 2013. Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. Proceedings of the National Academy of Sciences of the United States of America, 110(24): 9950−9955. doi: 10.1073/pnas.1305814110
    Li M, Jaffe AE, Straub RE, Tao R, Shin JH, Wang YH, et al. 2016. A human-specific AS3MT isoform and BORCS7 are molecular risk factors in the 10q24.32 schizophrenia-associated locus. Nature Medicine, 22(6): 649−656. doi: 10.1038/nm.4096
    Li WQ, Cai X, Li HJ, Song M, Zhang CY, Yang YF, et al. 2020b. Independent replications and integrative analyses confirm TRANK1 as a susceptibility gene for bipolar disorder. Neuropsychopharmacology. doi: 10.1038/s41386-020-00788-4.
    Liao Y, Smyth GK, Shi W. 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30(7): 923−930. doi: 10.1093/bioinformatics/btt656
    Liu WP, Li WQ, Cai X, Yang ZH, Li HJ, Su X, et al. 2020. Identification of a functional human-unique 351-bp Alu insertion polymorphism associated with major depressive disorder in the 1p31.1 GWAS risk loci. Neuropsychopharmacology, 45(7): 1196−1206. doi: 10.1038/s41386-020-0659-2
    Liu WP, Yan H, Zhou DY, Cai X, Zhang YYN, Li SY, et al. 2019. The depression GWAS risk allele predicts smaller cerebellar gray matter volume and reduced SIRT1 mRNA expression in Chinese population. Translational Psychiatry, 9(1): 333. doi: 10.1038/s41398-019-0675-3
    Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12): 550. doi: 10.1186/s13059-014-0550-8
    Lu QB, Sun JF, Yang QY, Cai WW, Xia MQ, Wu FF, et al. 2020. Magnetic brain stimulation using iron oxide nanoparticle-mediated selective treatment of the left prelimbic cortex as a novel strategy to rapidly improve depressive-like symptoms in mice. Zoological Research, 41(4): 381−394. doi: 10.24272/j.issn.2095-8137.2020.076
    Ma L, Semick SA, Chen Q, Li C, Tao R, Price AJ, et al. 2020. Schizophrenia risk variants influence multiple classes of transcripts of sorting nexin 19 (SNX19). Molecular Psychiatry, 25(4): 831−843. doi: 10.1038/s41380-018-0293-0
    Malhi GS, Mann JJ. 2018. Depression. The Lancet, 392(10161): 2299−2312. doi: 10.1016/S0140-6736(18)31948-2
    Millan MJ, Agid Y, Brüne M, Bullmore ET, Carter CS, Clayton NS, et al. 2012. Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nature Reviews Drug Discovery, 11(2): 141−168. doi: 10.1038/nrd3628
    Minatohara K, Akiyoshi M, Okuno H. 2015. Role of immediate-early genes in synaptic plasticity and neuronal ensembles underlying the memory trace. Frontiers in Molecular Neuroscience, 8: 78.
    Mostafavi S, Battle A, Zhu X, Potash JB, Weissman MM, Shi J, et al. 2014. Type I interferon signaling genes in recurrent major depression: increased expression detected by whole-blood RNA sequencing. Molecular Psychiatry, 19(12): 1267−1274. doi: 10.1038/mp.2013.161
    Nutt D, Wilson S, Paterson L. 2008. Sleep disorders as core symptoms of depression. Dialogues in Clinical Neuroscience, 10(3): 329−336.
    Ota KT, Liu RJ, Voleti B, Maldonado-Aviles JG, Duric V, Iwata M, et al. 2014. REDD1 is essential for stress-induced synaptic loss and depressive behavior. Nature Medicine, 20(5): 531−535. doi: 10.1038/nm.3513
    Otte C, Gold SM, Penninx BW, Pariante CM, Etkin A, Fava M, et al. 2016. Major depressive disorder. Nature Reviews Disease Primers, 2: 16065. doi: 10.1038/nrdp.2016.65
    Pantazatos SP, Huang YY, Rosoklija GB, Dwork AJ, Arango V, Mann JJ. 2017. Whole-transcriptome brain expression and exon-usage profiling in major depression and suicide: evidence for altered glial, endothelial and ATPase activity. Molecular Psychiatry, 22(5): 760−773. doi: 10.1038/mp.2016.130
    Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM. 2011. Dendritic spine pathology in neuropsychiatric disorders. Nature Neuroscience, 14(3): 285−293. doi: 10.1038/nn.2741
    Plaisier SB, Taschereau R, Wong JA, Graeber TG. 2010. Rank-rank hypergeometric overlap: identification of statistically significant overlap between gene-expression signatures. Nucleic Acids Research, 38(17): e169. doi: 10.1093/nar/gkq636
    Ramaker RC, Bowling KM, Lasseigne BN, Hagenauer MH, Hardigan AA, Davis NS, et al. 2017. Post-mortem molecular profiling of three psychiatric disorders. Genome Medicine, 9(1): 72. doi: 10.1186/s13073-017-0458-5
    Riemann D, Berger M, Voderholzer U. 2001. Sleep and depression-results from psychobiological studies: an overview. Biological Psychology, 57(1-3): 67−103. doi: 10.1016/S0301-0511(01)00090-4
    Ritchie ME, Phipson B, Wu D, Hu YF, Law CW, Shi W, et al. 2015. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 43(7): e47. doi: 10.1093/nar/gkv007
    Russo SJ, Nestler EJ. 2013. The brain reward circuitry in mood disorders. Nature Reviews Neuroscience, 14(9): 609−625. doi: 10.1038/nrn3381
    Scarpa JR, Fatma M, Loh YHE, Traore SR, Stefan T, Chen TH, et al. 2020. Shared transcriptional signatures in major depressive disorder and mouse chronic stress models. Biological Psychiatry, 88(2): 159−168. doi: 10.1016/j.biopsych.2019.12.029
    Scarpa JR, Jiang P, Gao VD, Fitzpatrick K, Millstein J, Olker C, et al. 2018. Cross-species systems analysis identifies gene networks differentially altered by sleep loss and depression. Science Advances, 4(7): eaat1294. doi: 10.1126/sciadv.aat1294
    Seney ML, Huo ZG, Cahill K, French L, Puralewski R, Zhang J, et al. 2018. Opposite molecular signatures of depression in men and women. Biological Psychiatry, 84(1): 18−27. doi: 10.1016/j.biopsych.2018.01.017
    Sequeira A, Klempan T, Canetti L, ffrench-Mullen J, Benkelfat C, Rouleau GA, et al. 2007. Patterns of gene expression in the limbic system of suicides with and without major depression. Molecular Psychiatry, 12(7): 640−655. doi: 10.1038/sj.mp.4001969
    Smith GD, Ebrahim S. 2003. 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease?. International Journal of Epidemiology, 32(1): 1−22. doi: 10.1093/ije/dyg070
    Smith GD, Hemani G. 2014. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Human Molecular Genetics, 23(R1): R89−R98. doi: 10.1093/hmg/ddu328
    Solé B, Jiménez E, Martinez-Aran A, Vieta E. 2015. Cognition as a target in major depression: new developments. European Neuropsychopharmacology, 25(2): 231−247. doi: 10.1016/j.euroneuro.2014.12.004
    Stein JL, de la Torre-Ubieta L, Tian Y, Parikshak NN, Hernández IA, Marchetto MC, et al. 2014. A quantitative framework to evaluate modeling of cortical development by neural stem cells. Neuron, 83(1): 69−86. doi: 10.1016/j.neuron.2014.05.035
    Sullivan PF, Neale MC, Kendler KS. 2000. Genetic epidemiology of major depression: review and meta-analysis. American Journal of Psychiatry, 157(10): 1552−1562. doi: 10.1176/appi.ajp.157.10.1552
    Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. 2017. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Research, 45(D1): D362−D368. doi: 10.1093/nar/gkw937
    Wang SS, Kamphuis W, Huitinga I, Zhou JN, Swaab DF. 2008. Gene expression analysis in the human hypothalamus in depression by laser microdissection and real-time PCR: the presence of multiple receptor imbalances. Molecular Psychiatry, 13(8): 786−799. doi: 10.1038/mp.2008.38
    Westra HJ, Peters MJ, Esko T, Yaghootkar H, Schurmann C, Kettunen J, et al. 2013. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nature Genetics, 45(10): 1238−1243. doi: 10.1038/ng.2756
    Wittenberg GM, Greene J, Vértes PE, Drevets WC, Bullmore ET. 2020. Major depressive disorder is associated with differential expression of innate immune and neutrophil-related gene networks in peripheral blood: a quantitative review of whole-genome transcriptional data from case-control studies. Biological Psychiatry. doi: 10.1016/j.biopsych.2020.05.006.
    Wray NR, Ripke S, Mattheisen M, Trzaskowski M, Byrne EM, Abdellaoui A, et al. 2018. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nature Genetics, 50(5): 668−681. doi: 10.1038/s41588-018-0090-3
    Wright FA, Sullivan PF, Brooks AI, Zou F, Sun W, Xia K, et al. 2014. Heritability and genomics of gene expression in peripheral blood. Nature Genetics, 46(5): 430−437. doi: 10.1038/ng.2951
    Wu Y, Zeng J, Zhang FT, Zhu ZH, Qi T, Zheng ZL, et al. 2018. Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits. Nature Communications, 9(1): 918. doi: 10.1038/s41467-018-03371-0
    Xiao X, Zheng FF, Chang H, Ma YN, Yao YG, Luo XJ, et al. 2018. The gene encoding protocadherin 9 (PCDH9), a novel risk factor for major depressive disorder. Neuropsychopharmacology, 43(5): 1128−1137. doi: 10.1038/npp.2017.241
    Xu L, Chen Y, Mayakonda A, Koh L, Chong YK, Buckley DL, et al. 2018. Targetable BET proteins- and E2F1-dependent transcriptional program maintains the malignancy of glioblastoma. Proceedings of the National Academy of Sciences of the United States of America, 115(22): E5086−E5095. doi: 10.1073/pnas.1712363115
    Yang ZH, Cai X, Qu N, Zhao LJ, Zhong BL, Zhang SF, et al. 2020a. Identification of a functional 339 bp Alu insertion polymorphism in the schizophrenia-associated locus at 10q24.32. Zoological Research, 41(1): 84−89. doi: 10.24272/j.issn.2095-8137.2020.014
    Yang ZH, Zhou DY, Li HJ, Cai X, Liu WP, Wang L, et al. 2020b. The genome-wide risk alleles for psychiatric disorders at 3p21.1 show convergent effects on mRNA expression, cognitive function, and mushroom dendritic spine. Molecular Psychiatry, 25(1): 48−66. doi: 10.1038/s41380-019-0592-0
    Yasoshima Y, Sako N, Senba E, Yamamoto T. 2006. Acute suppression, but not chronic genetic deficiency, of c-fos gene expression impairs long-term memory in aversive taste learning. Proceedings of the National Academy of Sciences of the United States of America, 103(18): 7106−7111. doi: 10.1073/pnas.0600869103
    Yu GC, Li F, Qin YD, Bo XC, Wu YB, Wang SQ. 2010. GOSemSim: an R package for measuring semantic similarity among GO terms and gene products. Bioinformatics, 26(7): 976−978. doi: 10.1093/bioinformatics/btq064
    Yu GC, Wang LG, Han YY, He QY. 2012. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS, 16(5): 284−287. doi: 10.1089/omi.2011.0118
    Zhang B, Horvath S. 2005. A general framework for weighted gene co-expression network analysis. Statistical Applications in Genetics and Molecular Biology, 4: 17.
    Zhong SJ, Zhang S, Fan XY, Wu Q, Yan LY, Dong J, et al. 2018. A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex. Nature, 555(7697): 524−528. doi: 10.1038/nature25980
    Zhu SS, Cordner ZA, Xiong JL, Chiu CT, Artola A, Zuo YN, et al. 2017. Genetic disruption of ankyrin-G in adult mouse forebrain causes cortical synapse alteration and behavior reminiscent of bipolar disorder. Proceedings of the National Academy of Sciences of the United States of America, 114(39): 10479−10484. doi: 10.1073/pnas.1700689114
    Zhu ZH, Zhang FT, Hu H, Bakshi A, Robinson MR, Powell JE, et al. 2016. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nature Genetics, 48(5): 481−487. doi: 10.1038/ng.3538
  • ZR-2020-174 Supplementary_Tables.rar
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (700) PDF downloads(135) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint