Volume 41 Issue 5
Sep.  2020
Turn off MathJax
Article Contents
Ting Song, Jun Zhou. Primary cilia in corneal development and disease. Zoological Research, 2020, 41(5): 495-502. doi: 10.24272/j.issn.2095-8137.2020.109
Citation: Ting Song, Jun Zhou. Primary cilia in corneal development and disease. Zoological Research, 2020, 41(5): 495-502. doi: 10.24272/j.issn.2095-8137.2020.109

Primary cilia in corneal development and disease

doi: 10.24272/j.issn.2095-8137.2020.109
Funds:  This work was supported by the Taishan Scholars Program of Shandong Province (20161201)
More Information
  • Corresponding author: E-mail: junzhou@sdnu.edu.cn
  • Received Date: 2020-05-06
  • Accepted Date: 2020-07-17
  • Available Online: 2020-08-04
  • Publish Date: 2020-09-18
  • As a transparent avascular tissue located at the front of the eyeball, the cornea is an important barrier to external damage. Both epithelial and endothelial cells of the cornea harbor primary cilia, which sense changes in the external environment and regulate intracellular signaling pathways. Accumulating evidence suggests that the primary cilium regulates corneal development in several ways, including participation in corneal epithelial stratification and maintenance of corneal endothelial cell morphology. In addition, the primary cilium has been implicated in the pathogenesis of several corneal diseases. In this review, we discuss recent findings that demonstrate the critical role of the primary cilium in corneal development. We also discuss the link between ciliary dysfunction and corneal diseases, which suggests that the primary cilium could be targeted to treat these diseases.
  • loading
  • [1]
    Ahn YJ, Choi SI, Yum HR, Shin SY, Park SH. 2017. Clinical features in children with posterior polymorphous corneal dystrophy. Optometry and Vision Science, 94(4): 476−481. doi: 10.1097/OPX.0000000000001039
    Anvarian Z, Mykytyn K, Mukhopadhyay S, Pedersen LB, Christensen ST. 2019. Cellular signalling by primary cilia in development, organ function and disease. Nature Reviews Nephrology, 15(4): 199−219. doi: 10.1038/s41581-019-0116-9
    Baek H, Shin HJ, Kim JJ, Shin N, Kim S, Yi MH, et al. 2017. Primary cilia modulate tlr4-mediated inflammatory responses in hippocampal neurons. Journal of Neuroinflammation, 14(1): 189. doi: 10.1186/s12974-017-0958-7
    Berbari NF, O'Connor AK, Haycraft CJ, Yoder BK. 2009. The primary cilium as a complex signaling center. Current Biology, 19(13): R526−R535. doi: 10.1016/j.cub.2009.05.025
    Blitzer AL, Panagis L, Gusella GL, Danias J, Mlodzik M, Iomini C. 2011. Primary cilia dynamics instruct tissue patterning and repair of corneal endothelium. Proceedings of the National Academy of Sciences of the United States of America, 108(7): 2819−2824. doi: 10.1073/pnas.1016702108
    Bykhovskaya Y, Gromova A, Makarenkova HP, Rabinowitz YS. 2016. Abnormal regulation of extracellular matrix and adhesion molecules in corneas of patients with keratoconus. International Journal of Keratoconus and Ectatic Corneal Diseases, 5(2): 63−70. doi: 10.5005/jp-journals-10025-1123
    Chaerkady R, Shao HJ, Scott SG, Pandey A, Jun AS, Chakravarti S. 2013. The keratoconus corneal proteome: Loss of epithelial integrity and stromal degeneration. Journal of Proteomics, 87: 122−131. doi: 10.1016/j.jprot.2013.05.023
    Chen XM, Li YP, Hua CF, Jia PJ, Xing YP, Xue BH, et al. 2019. Establishment of rapid risk assessment model for cigarette smoke extract exposure in chronic obstructive pulmonary disease. Toxicology Letters, 316: 10−19. doi: 10.1016/j.toxlet.2019.08.020
    Chen YT, Chen FY, Vijmasi T, Stephens DN, Gallup M, McNamara NA. 2013. Pax6 downregulation mediates abnormal lineage commitment of the ocular surface epithelium in aqueous-deficient dry eye disease. PLoS One, 8(10): e77286. doi: 10.1371/journal.pone.0077286
    Chen ZZ, Niu YY. 2019. Stem cell therapy for parkinson's disease using non-human primate models. Zoological Research, 40(5): 349−357. doi: 10.24272/j.issn.2095-8137.2019.053
    Cho YK, Zhang XH, Uehara H, Young JR, Archer B, Ambati B. 2012. Vascular endothelial growth factor receptor 1 morpholino increases graft survival in a murine penetrating keratoplasty model. Investigative Ophthalmology & Visual Science, 53(13): 8458−8471.
    Chung DD, Zhang WL, Jatavallabhula K, Barrington A, Jung JY, Aldave AJ. 2019. Alterations in GRHL2-OVOL2-ZEB1 axis and aberrant activation of wnt signaling lead to altered gene transcription in posterior polymorphous corneal dystrophy. Experimental Eye Research, 188: 107696. doi: 10.1016/j.exer.2019.107696
    Collin SP, Collin HB. 2004. Primary cilia in vertebrate corneal endothelial cells. Cell Biology International, 28(2): 125−130. doi: 10.1016/j.cellbi.2003.11.011
    Cui XH, Hong JX, Wang F, Deng SX, Yang YJ, Zhu XY, et al. 2014. Assessment of corneal epithelial thickness in dry eye patients. Optometry and Vision Science, 91(12): 1446−1454. doi: 10.1097/OPX.0000000000000417
    Cvekl A, Tamm ER. 2004. Anterior eye development and ocular mesenchyme: new insights from mouse models and human diseases. Bioessays, 26(4): 374−386. doi: 10.1002/bies.20009
    Das SK, Gupta I, Cho YK, Zhang XH, Uehara H, Muddana SK, et al. 2014. Vimentin knockdown decreases corneal opacity. Investigative Ophthalmology & Visual Science, 55(7): 4030−4040.
    de Paiva CS, Pflugfelder SC, Ng SM, Akpek EK. 2019. Topical cyclosporine a therapy for dry eye syndrome. Cochrane Database of Systematic Reviews, 9(9): Cd010051.
    DelMonte DW, Kim T. 2011. Anatomy and physiology of the cornea. Journal of Cataract & Refractive Surgery, 37(3): 588−598.
    Dinsmore C, Reiter JF. 2016. Endothelial primary cilia inhibit atherosclerosis. EMBO Reports, 17(2): 156−166. doi: 10.15252/embr.201541019
    Djalilian AR, Namavari A, Ito A, Balali S, Afshar A, Lavker RM, et al. 2008. Down-regulation of notch signaling during corneal epithelial proliferation. Molecular Vision, 14: 1041−1049.
    Douvaras P, Mort RL, Edwards D, Ramaesh K, Dhillon B, Morley SD, et al. 2013. Increased corneal epithelial turnover contributes to abnormal homeostasis in the pax6+/- mouse model of aniridia. PLoS One, 8(8): e71117. doi: 10.1371/journal.pone.0071117
    Edelhauser HF. 2006. The balance between corneal transparency and edema: the proctor lecture. Investigative Ophthalmology & Visual Science, 47(5): 1754−1767.
    Ezratty EJ, Stokes N, Chai S, Shah AS, Williams SE, Fuchs E. 2011. A role for the primary cilium in notch signaling and epidermal differentiation during skin development. Cell, 145(7): 1129−1141. doi: 10.1016/j.cell.2011.05.030
    Feizi S. 2018. Corneal endothelial cell dysfunction: etiologies and management. Therapeutic Advances in Ophthalmology, 10. doi: 10.1177/2515841418815802
    Grimes DT, Boswell CW, Morante NFC, Henkelman RM, Burdine RD, Ciruna B. 2016. Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to spine curvature. Science, 352(6291): 1341−1344. doi: 10.1126/science.aaf6419
    Grisanti L, Revenkova E, Gordon RE, Iomini C. 2016. Primary cilia maintain corneal epithelial homeostasis by regulation of the notch signaling pathway. Development, 143(12): 2160−2171. doi: 10.1242/dev.132704
    Gupta R, Kumawat BL, Paliwal P, Tandon R, Sharma N, Sen S, et al. 2015. Association of ZEB1 and TCF4 rs613872 changes with late onset fuchs endothelial corneal dystrophy in patients from northern india. Molecular Vision, 21: 1252−1260.
    Hafford-Tear NJ, Tsai YC, Sadan AN, Sanchez-Pintado B, Zarouchlioti C, Maher GJ, et al. 2019. CRISPR/cas9-targeted enrichment and long-read sequencing of the fuchs endothelial corneal dystrophy-associated tcf4 triplet repeat. Genetics in Medicine, 21(9): 2092−2102. doi: 10.1038/s41436-019-0453-x
    Hoar RM. 1982. Embryology of the eye. Environmental Health Perspectives, 44: 31−34. doi: 10.1289/ehp.824431
    Joyce NC. 2003. Proliferative capacity of the corneal endothelium. Progress in Retinal and Eye Research, 22(3): 359−389. doi: 10.1016/S1350-9462(02)00065-4
    Kanellopoulos AJ. 2009. Comparison of sequential vs same-day simultaneous collagen cross-linking and topography-guided prk for treatment of keratoconus. Journal of Refractive Surgery, 25(9): S812−S818. doi: 10.3928/1081597X-20090813-10
    Keller J, Giralt J, Alforja S, Casaroli-Marano RP. 2015. Altering the clinical course of sorsby fundus dystrophy with the use of anti-vascular endothelial growth factor intraocular therapy. Retinal Cases and Brief Reports, 9(2): 104−105. doi: 10.1097/ICB.0000000000000103
    Kopinke D, Roberson EC, Reiter JF. 2017. Ciliary hedgehog signaling restricts injury-induced adipogenesis. Cell, 170(2): 340−351. e312. doi: 10.1016/j.cell.2017.06.035
    Lehman JM, Michaud EJ, Schoeb TR, Aydin-Son Y, Miller M, Yoder BK. 2008. The oak ridge polycystic kidney mouse: Modeling ciliopathies of mice and men. Developmental Dynamics, 237(8): 1960−1971. doi: 10.1002/dvdy.21515
    Loukovitis E, Kozeis N, Gatzioufas Z, Kozei A, Tsotridou E, Stoila M, et al. 2019. The proteins of keratoconus: a literature review exploring their contribution to the pathophysiology of the disease. Advances in Therapy, 36(9): 2205−2222. doi: 10.1007/s12325-019-01026-0
    Lu Y, Ai JZ, Gessler D, Su Q, Tran K, Zheng Q, et al. 2016. Efficient transduction of corneal stroma by adeno-associated viral serotype vectors for implications in gene therapy of corneal diseases. Human Gene Therapy, 27(8): 598−608. doi: 10.1089/hum.2015.167
    Lwigale PY. 2015. Corneal development: different cells from a common progenitor. Progress in Molecular Biology and Translational Science, 134: 43−59. doi: 10.1016/bs.pmbts.2015.04.003
    Lyu R, Zhou J. 2017. The multifaceted roles of primary cilia in the regulation of stem cell properties and functions. Journal of Cellular Physiology, 232(5): 935−938. doi: 10.1002/jcp.25683
    Ma X, Wong ASY, Tam HY, Tsui SYK, Chung DLS, Feng B. 2018. In vivo genome editing thrives with diversified CRISPR technologies. Zoological Research, 39(2): 58−71. doi: 10.24272/j.issn.2095-8137.2017.012
    Marini JC, Forlino A, Cabral WA, Barnes AM, San Antonio JD, Milgrom S, et al. 2007. Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: Regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Human Mutation, 28(3): 209−221. doi: 10.1002/humu.20429
    Maugeri G, Longo A, D'Amico AG, Rasa DM, Reibaldi M, Russo A, et al. 2018. Trophic effect of PACAP on human corneal endothelium. Peptides, 99: 20−26. doi: 10.1016/j.peptides.2017.11.003
    May-Simera HL, Wan Q, Jha BS, Hartford J, Khristov V, Dejene R, et al. 2018. Primary cilium-mediated retinal pigment epithelium maturation is disrupted in ciliopathy patient cells. Cell Reports, 22(1): 189−205. doi: 10.1016/j.celrep.2017.12.038
    McMonnies CW. 2015. Inflammation and keratoconus. Optometry and Vision Science, 92(2): e35−e41. doi: 10.1097/OPX.0000000000000455
    Mohammadpour M, Masoumi A, Mirghorbani M, Shahraki K, Hashemi H. 2017. Updates on corneal collagen cross-linking: Indications, techniques and clinical outcomes. Journal of Current Ophthalmology, 29(4): 235−247. doi: 10.1016/j.joco.2017.07.003
    Mönnich M, Borgeskov L, Breslin L, Jakobsen L, Rogowski M, Doganli C, et al. 2018. CEP128 localizes to the subdistal appendages of the mother centriole and regulates TGF-β/bmp signaling at the primary cilium. Cell Reports, 22(10): 2584−2592. doi: 10.1016/j.celrep.2018.02.043
    Morishige N, Sonoda KH. 2013. Bullous keratopathy as a progressive disease: evidence from clinical and laboratory imaging studies. Cornea, 32(Suppl 1): S77−S83.
    Na KS, Mok JW, Kim JY, Rho CR, Joo CK. 2012. Correlations between tear cytokines, chemokines, and soluble receptors and clinical severity of dry eye disease. Investigative Ophthalmology & Visual Science, 53(9): 5443−5450.
    O'Brart DPS. 2014. Corneal collagen cross-linking: a review. Journal of Optometry, 7(3): 113−124. doi: 10.1016/j.optom.2013.12.001
    Okumura N, Koizumi N, Ueno M, Sakamoto Y, Takahashi H, Hirata K, et al. 2011. Enhancement of corneal endothelium wound healing by rho-associated kinase (ROCK) inhibitor eye drops. British Journal of Ophthalmology, 95(7): 1006−1009. doi: 10.1136/bjo.2010.194571
    Oliveira-Soto L, Efron N. 2001. Morphology of corneal nerves using confocal microscopy. Cornea, 20(4): 374−384. doi: 10.1097/00003226-200105000-00008
    Pala R, Alomari N, Nauli SM. 2017. Primary cilium-dependent signaling mechanisms. International Journal of Molecular Sciences, 18(11): 2272. doi: 10.3390/ijms18112272
    Pazour GJ, Quarmby L, Smith AO, Desai PB, Schmidts M. 2020. Cilia in cystic kidney and other diseases. Cellular Signalling, 69: 109519. doi: 10.1016/j.cellsig.2019.109519
    Pitaval A, Tseng Q, Bornens M, Théry M. 2010. Cell shape and contractility regulate ciliogenesis in cell cycle-arrested cells. The Journal of Cell Biology, 191(2): 303−312. doi: 10.1083/jcb.201004003
    Portal C, Rompolas P, Lwigale P, Iomini C. 2019. Primary cilia deficiency in neural crest cells models anterior segment dysgenesis in mouse. eLife, 8: e52423. doi: 10.7554/eLife.52423
    Ran J, Liu M, Feng J, Li HX, Ma HX, Song T, et al. 2020. ASK1-mediated phosphorylation blocks hdac6 ubiquitination and degradation to drive the disassembly of photoreceptor connecting cilia. Developmental Cell, 53(3): 287−299. doi: 10.1016/j.devcel.2020.03.010
    Reiter JF, Leroux MR. 2017. Genes and molecular pathways underpinning ciliopathies. Nature Reviews Molecular Cell Biology, 18(9): 533−547. doi: 10.1038/nrm.2017.60
    Roy O, Leclerc VB, Bourget JM, Thériault M, Proulx S. 2015. Understanding the process of corneal endothelial morphological change in vitro. Investigative Ophthalmology & Visual Science, 56(2): 1228−1237.
    Saghizadeh M, Chwa M, Aoki A, Lin B, Pirouzmanesh A, Brown DJ, et al. 2001. Altered expression of growth factors and cytokines in keratoconus, bullous keratopathy and diabetic human corneas. Experimental Eye Research, 73(2): 179−189. doi: 10.1006/exer.2001.1028
    Sarkisian MR, Siebzehnrubl D, Hoang-Minh L, Deleyrolle L, Silver DJ, Siebzehnrubl FA, et al. 2014. Detection of primary cilia in human glioblastoma. Journal of Neuro-Oncology, 117(1): 15−24. doi: 10.1007/s11060-013-1340-y
    Serrao S, Lombardo G, Cali C, Lombardo M. 2019. Role of corneal epithelial thickness mapping in the evaluation of keratoconus. Contact Lens and Anterior Eye, 42(6): 662−665. doi: 10.1016/j.clae.2019.04.019
    Shen HY, Zhou Y, Zhou QJ, Li MY, Chen J. 2020. Mudskipper interleukin-34 modulates the functions of monocytes/macrophages via the colony-stimulating factor-1 receptor 1. Zoological Research, 41(2): 123−137. doi: 10.24272/j.issn.2095-8137.2020.026
    Shen L, Sun P, Zhang CW, Yang L, Du LQ, Wu XY. 2017. Therapy of corneal endothelial dysfunction with corneal endothelial cell-like cells derived from skin-derived precursors. Scientific Reports, 7(1): 13400. doi: 10.1038/s41598-017-13787-1
    Solinís MA, del Pozo-Rodríguez A, Apaolaza PS, Rodríguez-Gascón A. 2015. Treatment of ocular disorders by gene therapy. European Journal of Pharmaceutics and Biopharmaceutics, 95: 331−342. doi: 10.1016/j.ejpb.2014.12.022
    Stolz A, Neufeld K, Ertych N, Bastians H. 2015. Wnt-mediated protein stabilization ensures proper mitotic microtubule assembly and chromosome segregation. EMBO Reports, 16(4): 490−499. doi: 10.15252/embr.201439410
    Sun YZ, Liu ST, Li XM, Zou K. 2019. Progress in in vitro culture and gene editing of porcine spermatogonial stem cells. Zoological Research, 40(5): 343−348. doi: 10.24272/j.issn.2095-8137.2019.051
    Tang H, Zhang W, Yan XM, Wang LP, Dong H, Shou T, et al. 2016. Analysis of SLC4A11, ZEB1, LOXHD1, COL8A2 and TCF4 gene sequences in a multi-generational family with late-onset fuchs corneal dystrophy. International Journal of Molecular Medicine, 37(6): 1487−1500. doi: 10.3892/ijmm.2016.2570
    Torrecilla J, Del Pozo-Rodríguez A, Vicente-Pascual M, Solinís MÁ, Rodriguez-Gascon A. 2018. Targeting corneal inflammation by gene therapy: emerging strategies for keratitis. Experimental Eye Research, 176: 130−140. doi: 10.1016/j.exer.2018.07.006
    Toyono T, Usui T, Villarreal G Jr, Kallay L, Matthaei M, Vianna LM, et al. 2016. Microrna-29b overexpression decreases extracellular matrix mrna and protein production in human corneal endothelial cells. Cornea, 35(11): 1466−1470. doi: 10.1097/ICO.0000000000000954
    Tylkowski MA, Yang K, Hoyer-Fender S, Stoykova A. 2015. Pax6 controls centriole maturation in cortical progenitors through odf2. Cellular and Molecular Life Sciences, 72(9): 1795−1809. doi: 10.1007/s00018-014-1766-1
    van Diemen FR, Kruse EM, Hooykaas MJG, Bruggeling CE, Schürch AC, van Ham PM, et al. 2016. CRISPR/cas9-mediated genome editing of herpesviruses limits productive and latent infections. PLoS Pathogens, 12(6): e1005701. doi: 10.1371/journal.ppat.1005701
    Vedana G, Villarreal G Jr, Jun AS. 2016. Fuchs endothelial corneal dystrophy: current perspectives. Clinical Ophthalmology, 10: 321−330.
    Wang CY, Tsai HL, Syu JS, Chen TY, Su MT. 2017. Primary cilium-regulated EG-VEGF signaling facilitates trophoblast invasion. Journal of Cellular Physiology, 232(6): 1467−1477. doi: 10.1002/jcp.25649
    Wieben ED, Baratz KH, Aleff RA, Kalari KR, Tang XJ, Maguire LJ, et al. 2019. Gene expression and missplicing in the corneal endothelium of patients with a TCF4 trinucleotide repeat expansion without fuchs' endothelial corneal dystrophy. Investigative Ophthalmology & Visual Science, 60(10): 3636−3643.
    Williams KA, Irani YD. 2016. Gene therapy and gene editing for the corneal dystrophies. Asia-Pacific Journal of Ophthalmology, 5(4): 312−316. doi: 10.1097/APO.0000000000000215
    Wood CR, Huang KY, Diener DR, Rosenbaum JL. 2013. The cilium secretes bioactive ectosomes. Current Biology, 23(10): 906−911. doi: 10.1016/j.cub.2013.04.019
    Xu Q, Liu WW, Liu XL, Otkur W, Hayashi T, Yamato M, et al. 2018. Type I collagen promotes primary cilia growth through down-regulating HDAC6-mediated autophagy in confluent mouse embryo fibroblast 3T3-L1 cells. Journal of Bioscience and Bioengineering, 125(1): 8−14. doi: 10.1016/j.jbiosc.2017.07.012
    Yang J, Feng S, Yi G, Wu W, Yi R, Lu X, Xu W, Qiu H. 2016. Inhibition of RelA expression via RNA interference induces immune tolerance in a rat keratoplasty model. Molecular Immunology, 73: 88−97. doi: 10.1016/j.molimm.2016.03.014
    Yang Y, Hao HJ, Wu XF, Guo S, Liu Y, Ran J, et al. 2019. Mixed-lineage leukemia protein 2 suppresses ciliary assembly by the modulation of actin dynamics and vesicle transport. Cell Discovery, 5(1): 33. doi: 10.1038/s41421-019-0100-3
    Yang YF, Ran J, Liu M, Li DW, Li YY, Shi XJ, et al. 2014. CYLD mediates ciliogenesis in multiple organs by deubiquitinating Cep70 and inactivating HDAC6. Cell Research, 24(11): 1342−1353. doi: 10.1038/cr.2014.136
    Yu F, Guo S, Li T, Ran J, Zhao W, Li DW, et al. 2019. Ciliary defects caused by dysregulation of O-GlcNAc modification are associated with diabetic complications. Cell Research, 29(2): 171−173. doi: 10.1038/s41422-018-0114-7
    Yu F, Ran J, Zhou J. 2016. Ciliopathies: does HDAC6 represent a new therapeutic target?. Trends in Pharmacological Sciences, 37(2): 114−119. doi: 10.1016/j.tips.2015.11.002
    Zhong M, Gadek TR, Bui M, Shen W, Burnier J, Barr KJ, et al. 2012. Discovery and development of potent LFA-1/ICAM-1 antagonist SAR 1118 as an ophthalmic solution for treating dry eye. ACS Medicinal Chemistry Letters, 3(3): 203−206. doi: 10.1021/ml2002482
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (658) PDF downloads(119) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint