Volume 41 Issue 4
Jul.  2020
Turn off MathJax
Article Contents
Zhen-Hui Li, Xia-Ping He, Hao Li, Rong-Qiao He, Xin-Tian Hu. Age-associated changes in amyloid-β and formaldehyde concentrations in cerebrospinal fluid of rhesus monkeys. Zoological Research, 2020, 41(4): 444-448. doi: 10.24272/j.issn.2095-8137.2020.088
Citation: Zhen-Hui Li, Xia-Ping He, Hao Li, Rong-Qiao He, Xin-Tian Hu. Age-associated changes in amyloid-β and formaldehyde concentrations in cerebrospinal fluid of rhesus monkeys. Zoological Research, 2020, 41(4): 444-448. doi: 10.24272/j.issn.2095-8137.2020.088

Age-associated changes in amyloid-β and formaldehyde concentrations in cerebrospinal fluid of rhesus monkeys

doi: 10.24272/j.issn.2095-8137.2020.088
#Authors contributed equally to this work
Funds:  This study was supported by the National Key R&D Program of China (2018YFA0801403), Key Realm R&D Program of GuangDong Province (2019B030335001), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB32060200), the National Natural Science Foundation of China (81941014, 81471312, 81771387, 81460352, 81500983, 31700897, 31700910, 31800901, 31960178, 91732302), the Applied Basic Research Programs of Science and Technology Commission Foundation of Yunnan Province (2017FB109, 2018FB052, 2018FB053, 2019FA007), China Postdoctoral Science Foundation (2018M631105) and CAS “Light of West China” Program
More Information
  • Rhesus monkeys (Macaca mulatta) are valuable experimental animals for studies on neurodegenerative diseases due to their evolutionarily close relationship to humans (

    ). Rhesus monkeys also display similar hallmarks of aging and neurodegeneration as humans, including formation of senile plaques in the brain (

    ;

    ). However, changes in formaldehyde (FA) levels in the cerebrospinal fluid (CSF) of rhesus monkeys with aging have not been reported. Additionally, whether changes in CSF FA are correlated with changes in amyloid-β (Aβ) concentrations have not yet been explored. Here, the CSF levels of Aβ40, Aβ42, and FA were measured in 56 rhesus monkeys of different ages, ranging from 4 to 26 years old. Results revealed significant declines in Aβ40 and Aβ42, and an increase in FA with age. Interestingly, the increase in FA levels was negatively correlated with Aβ40 and Aβ42 concentrations in aged rhesus monkeys but not in young and middle-aged monkeys. These results appear to parallel changes seen within human aging, i.e., decreased levels of CSF Aβ and increased levels of FA in normal aged adults and Alzheimer’s disease (AD) patients. These findings further indicate that rhesus monkeys are a reliable model for studying age-related neurological disorders such as AD and suggest that FA is an important factor in AD development and may be used as a diagnostic indicator of such disease.

  • loading
  • [1]
    Beckman D, Ott S, Donis-Cox K, Janssen WG, Bliss-Moreau E, Rudebeck PH, Baxter MG, Morrison JH. 2019. Oligomeric Aβ in the monkey brain impacts synaptic integrity and induces accelerated cortical aging. Proceedings of the National Academy of Sciences of the United States of America, 116(52): 26239−26246. doi:  10.1073/pnas.1902301116
    [2]
    Chen JA, Fears SC, Jasinska AJ, Huang A, Al-Sharif NB, Scheibel KE, Dyer TD, Fagan AM, Blangero J, Woods R, Jorgensen MJ, Kaplan JR, Freimer NB, Coppola G. 2018. Neurodegenerative disease biomarkers Aβ1-40, Aβ1-42, tau, and p-tau181 in the vervet monkey cerebrospinal fluid: Relation to normal aging, genetic influences, and cerebral amyloid angiopathy. Brain and Behavior, 8(2): e00903. doi:  10.1002/brb3.903
    [3]
    Chen K, Maley J, Yu PH. 2006. Potential implications of endogenous aldehydes in β-amyloid misfolding, oligomerization and fibrillogenesis. Journal of Neurochemistry, 99(5): 1413−1424. doi:  10.1111/j.1471-4159.2006.04181.x
    [4]
    Chu XX, Rizak JD, Yang SC, Wang JH, Ma YY, Hu XT. 2014. A natural model of behavioral depression in postpartum adult female cynomolgus monkeys (Macaca fascicularis). Zoological Research, 35(3): 174−181.
    [5]
    Clejan LA, Cederbaum AI. 1993. Stimulation by paraquat of microsomal and cytochrome P-450-dependent oxidation of glycerol to formaldehyde. Biochemical Journal, 295(3): 781−786. doi:  10.1042/bj2950781
    [6]
    del Mar Hernandez M, Esteban M, Szabo P, Boada M, Unzeta M. 2005. Human plasma semicarbazide sensitive amine oxidase (SSAO), β-amyloid protein and aging. Neuroscience Letters, 384(1-2): 183−187. doi:  10.1016/j.neulet.2005.04.074
    [7]
    Fagan AM, Mintun MA, Mach RH, Lee SY, Dence CS, Shah AR, LaRossa GN, Spinner ML, Klunk WE, Mathis CA, DeKosky ST, Morris JC, Holtzman DM. 2006. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Annals of Neurology, 59(3): 512−519. doi:  10.1002/ana.20730
    [8]
    Feng XL, Che HL, Ning X, Ba XY, Li J, Zhang JF, Wang Y, Hu ZF, Hu XT, Ren XF. 2019. Direct sunlight exposure reduces hair cortisol levels in rhesus monkeys (Macaca mulatta). Zoological Research, 40(6): 583−586. doi:  10.24272/j.issn.2095-8137.2019.064
    [9]
    Ferrer I, Lizcano JM, Hernández M, Unzeta M. 2002. Overexpression of semicarbazide sensitive amine oxidase in the cerebral blood vessels in patients with Alzheimer's disease and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Neuroscience Letters, 321(1-2): 21−24. doi:  10.1016/S0304-3940(01)02465-X
    [10]
    Fukumoto H, Rosene DL, Moss MB, Raju S, Hyman BT, Irizarry MC. 2004. β-secretase activity increases with aging in human, monkey, and mouse brain. The American Journal of Pathology, 164(2): 719−725. doi:  10.1016/S0002-9440(10)63159-8
    [11]
    Hardy J, Selkoe DJ. 2002. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science, 297(5580): 353−356. doi:  10.1126/science.1072994
    [12]
    He RQ, Lu J, Miao JY. 2010. Formaldehyde stress. Science China Life Sciences, 53(12): 1399−1404. doi:  10.1007/s11427-010-4112-3
    [13]
    He XP, Li ZH, Rizak JD, Wu SH, Wang ZB, He RQ, Su M, Qin DD, Wang JK, Hu XT. 2017. Resveratrol attenuates formaldehyde induced hyperphosphorylation of tau protein and cytotoxicity in N2a cells. Frontiers in Neuroscience, 10: 598.
    [14]
    Heuer E, Rosen RF, Cintron A, Walker LC. 2012. Nonhuman primate models of Alzheimer-like cerebral proteopathy. Current Pharmaceutical Design, 18(8): 1159−1169. doi:  10.2174/138161212799315885
    [15]
    Irie K. 2020. New diagnostic method for Alzheimer's disease based on the toxic conformation theory of amyloid β. Bioscience, Biotechnology, and Biochemistry, 84(1): 1−16. doi:  10.1080/09168451.2019.1667222
    [16]
    Kimura N, Tanemura K, Nakamura S, Takashima A, Ono F, Sakakibara I, Ishii Y, Kyuwa S, Yoshikawa Y. 2003. Age-related changes of Alzheimer's disease-associated proteins in cynomolgus monkey brains. Biochemical and Biophysical Research Communications, 310(2): 303−311. doi:  10.1016/j.bbrc.2003.09.012
    [17]
    Lana E, Gellerbring A, Jung S, Nordberg A, Unger Lithner C, Darreh-Shori T. 2019. Homomeric and heteromeric aβ species exist in human brain and CSF regardless of alzheimer's disease status and risk genotype. Frontiers in Molecular Neuroscience, 12: 176. doi:  10.3389/fnmol.2019.00176
    [18]
    Liesivuori J, Savolainen AH. 1991. Methanol and formic acid toxicity: biochemical mechanisms. Pharmacology & Toxicology, 69(3): 157−163.
    [19]
    Lu J, Miao JY, Su T, Liu Y, He RQ. 2013. Formaldehyde induces hyperphosphorylation and polymerization of Tau protein both in vitro and in vivo. Biochimica et Biophysica Acta (BBA) - General Subjects, 1830(8): 4102−4116. doi:  10.1016/j.bbagen.2013.04.028
    [20]
    Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, Caspersen C, Chen X, Pollak S, Chaney M, Trinchese F, Liu SM, Gunn-Moore F, Lue LF, Walker DG, Kuppusamy P, Zewier ZL, Arancio O, Stern D, Yan SS, Wu H. 2004. ABAD directly links Aß to mitochondrial toxicity in Alzheimer's disease. Science, 304(5669): 448−452. doi:  10.1126/science.1091230
    [21]
    Mattsson N, Zetterberg H, Hansson O, Andreasen N, Parnetti L, Jonsson M, Herukka SK, van der Flier WM, Blankenstein MA, Ewers M, Rich K, Kaiser E, Verbeek M, Tsolaki M, Mulugeta E, Rosén E, Aarsland D, Visser PJ, Schröder J, Marcusson J, de Leon M, Hampel H, Scheltens P, Pirttilä T, Wallin A, Jonhagen ME, Minthon L, Winblad B, Blennow K. 2009. CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA, 302(4): 385−393. doi:  10.1001/jama.2009.1064
    [22]
    Nie CL, Zhang W, Zhang D, He RQ. 2005. Changes in conformation of human neuronal tau during denaturation in formaldehyde solution. Protein & Peptide Letters, 12(1): 75−78.
    [23]
    Ohta S, Ohsawa I. 2006. Dysfunction of mitochondria and oxidative stress in the pathogenesis of Alzheimer's disease: on defects in the cytochrome c oxidase complex and aldehyde detoxification. Journal of Alzheimer's Disease, 9(2): 155−166. doi:  10.3233/JAD-2006-9208
    [24]
    Paspalas CD, Carlyle BC, Leslie S, Preuss TM, Crimins JL, Huttner AJ, van Dyck CH, Rosene DL, Nairn AC, Arnsten AFT. 2018. The aged rhesus macaque manifests Braak stage III/IV Alzheimer's-like pathology. Alzheimer’s & Dementia, 14(5): 680−691.
    [25]
    Perrin RJ, Fagan AM, Holtzman DM. 2009. Multimodal techniques for diagnosis and prognosis of Alzheimer's disease. Nature, 461(7266): 916−922. doi:  10.1038/nature08538
    [26]
    Podlisny MB, Tolan DR, Selkoe DJ. 1991. Homology of the amyloid beta protein precursor in monkey and human supports a primate model for beta amyloidosis in Alzheimer's disease. The American Journal of Pathology, 138(6): 1423−1435.
    [27]
    Qiang M, Xiao R, Su T, Wu BB, Tong ZQ, Liu Y, He RQ. 2014. A novel mechanism for endogenous formaldehyde elevation in SAMP8 mouse. Journal of Alzheimer's Disease, 40(4): 1039−1053. doi:  10.3233/JAD-131595
    [28]
    Qin DD, Dominic Rizak J, Feng XL, Chu XX, Yang SC, Li CL, Lv LB, Ma YY, Hu XT. 2013. Social rank and cortisol among female rhesus macaques (Macaca mulatta). Zoological Research, 34(E2): E42−E49.
    [29]
    Rizak JD, Ma YY, Hu XT. 2014. Is formaldehyde the missing link in AD pathology? The differential aggregation of amyloid-beta with APOE isoforms in vitro. Current Alzheimer Research, 11(5): 461−468. doi:  10.2174/1567205011666140425112043
    [30]
    Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS, Petersen RC, Blennow K, Soares H, Simon A, Lewczuk P, Dean R, Siemers E, Potter W, Lee VMY, Trojanowski JQ. 2009. Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects. Annals of Neurolog, 65(4): 403−413. doi:  10.1002/ana.21610
    [31]
    Takeuchi A, Takigawa T, Abe M, Kawai T, Endo Y, Yasugi T, Endo G, Ogino K. 2007. Determination of formaldehyde in urine by headspace gas chromatography. Bulletin of Environmental Contamination and Toxicology, 79(1): 1−4. doi:  10.1007/s00128-007-9172-0
    [32]
    Tong ZQ, Han CS, Luo WH, Wang XH, Li H, Luo HJ, Zhou JQ, Qi JS, He RQ. 2013. Accumulated hippocampal formaldehyde induces age-dependent memory decline. AGE, 35(3): 583−596. doi:  10.1007/s11357-012-9388-8
    [33]
    Tong ZQ, Han CS, Qiang M, Wang WS, Lv JH, Zhang SZ, Luo WH, Li H, Luo HJ, Zhou JN, Wu BB, Su T, Yang X, Wang XM, Liu Y, He RQ. 2015. Age-related formaldehyde interferes with DNA methyltransferase function, causing memory loss in Alzheimer's disease. Neurobiology of Aging, 36(1): 100−110. doi:  10.1016/j.neurobiolaging.2014.07.018
    [34]
    Tong ZQ, Wang WS, Luo WH, Lv JH, Li H, Luo HJ, Jia JP, He RQ. 2017. Urine formaldehyde predicts cognitive impairment in post-stroke dementia and alzheimer's disease. Journal of Alzheimer's Disease, 55(3): 1031−1038.
    [35]
    Tong ZQ, Zhang JL, Luo WH, Wang WS, Li FX, Li H, Luo HJ, Lu J, Zhou JN, Wan Y, He RQ. 2011. Urine formaldehyde level is inversely correlated to mini mental state examination scores in senile dementia. Neurobiology of Aging, 32(1): 31−41. doi:  10.1016/j.neurobiolaging.2009.07.013
    [36]
    Tulpule K, Dringen R. 2013. Formaldehyde in brain: an overlooked player in neurodegeneration?. Journal of Neurochemistry, 127(1): 7−21.
    [37]
    Vassar R. 2005. β-Secretase, APP and Aβ in Alzheimer's disease. In: Harris JR, Fahrenholz F. Alzheimer’s Disease. Boston: Springer, 79-103.
    [38]
    Wang BB, Wang J, Zhou SR, Tan SN, He X, Yang Z, Xie YC, Li S, Zheng CG, Ma X. 2008. The association of mitochondrial aldehyde dehydrogenase gene (ALDH2) polymorphism with susceptibility to late-onset Alzheimer's disease in Chinese. Journal of the Neurological Sciences, 268(1-2): 172−175. doi:  10.1016/j.jns.2007.12.006
    [39]
    Wang F, Chen DQ, Wu PP, Klein C, Jin CY. 2019. Formaldehyde, epigenetics, and alzheimer's disease. Chemical Research in Toxicology, 32(5): 820−830.
    [40]
    Yang MF, Lu J, Miao JY, Rizak J, Yang JZ, Zhai RW, Zhou J, Qu JG, Wang JH, Yang SC, Ma YY, Hu XT, He RQ. 2014a. Alzheimer's disease and methanol toxicity (part 1): chronic methanol feeding led to memory impairments and tau hyperphosphorylation in mice. Journal of Alzheimer's Disease, 41(4): 1117−1129. doi:  10.3233/JAD-131529
    [41]
    Yang MF, Miao JY, Rizak J, Zhai RW, Wang ZB, Huma T, Li T, Zheng N, Wu SH, Zheng YW, Fan XN, Yang JZ, Wang JH, Yang SC, Ma YY, Lü LB, He RQ, Hu XT. 2014b. Alzheimer's disease and methanol toxicity (part 2): lessons from four rhesus macaques (Macaca mulatta) chronically fed methanol. Journal of Alzheimer's Disease, 41(4): 1131−1147. doi:  10.3233/JAD-131532
    [42]
    Yao J, Du H, Yan SQ, Fang F, Wang CD, Lue LF, Guo L, Chen D, Stern DM, Gunn Moore FJ, Xi Chen J, Arancio O, Yan SD. 2011. Inhibition of amyloid-β (Aβ) peptide-binding alcohol dehydrogenase-Aβ interaction reduces Aβ accumulation and improves mitochondrial function in a mouse model of Alzheimer's disease. The Journal of Neuroscience, 31(6): 2313−2320. doi:  10.1523/JNEUROSCI.4717-10.2011
    [43]
    Yue F, Lu CL, Ai Y, Chan P, Zhang ZM. 2014. Age-associated changes of cerebrospinal fluid amyloid-β and tau in cynomolgus monkeys. Neurobiology of Aging, 35(7): 1656−1659. doi:  10.1016/j.neurobiolaging.2014.01.139
    [44]
    Zhai RW, Rizak J, Zheng N, He XP, Li ZH, Yi nY, Su T, He YG, He RQ, Ma YY, Yang MF, Wang ZB, Hu XT. 2018. Alzheimer's disease-like pathologies and cognitive impairments induced by formaldehyde in non-human primates. Current Alzheimer Research, 15(14): 1304−1321. doi:  10.2174/1567205015666180904150118
    [45]
    Zhai RW, Zheng N, Rizak J, Hu XT. 2016. Evidence for conversion of methanol to formaldehyde in nonhuman primate brain. Analytical Cellular Pathology, 2016: 4598454.
    [46]
    Zhang XL, Pang W, Hu XT, Li JL, Yao YG, Zheng Y T. 2014. Experimental primates and non-human primate (NHP) models of human diseases in China: current status and progress. Zoological Research, 35(6): 447−464.
  • Relative Articles

    [1] John P. Capitanio, Frederik Dethloff, Christoph W. Turck. Lipid metabolism is associated with temperament, corticosteroid, and hematological measures in infant rhesus monkeys (Macaca mulatta). Zoological Research, 2020, 41(6): 709-714.  doi: 10.24272/j.issn.2095-8137.2020.244
    [2] Shi-Hao Wu, Zhi-Xing Liao, Joshua D. Rizak, Na Zheng, Lin-Heng Zhang, Hen Tang, Xiao-Bin He, Yang Wu, Xia-Ping He, Mei-Feng Yang, Zheng-Hui Li, Dong-Dong Qin, Xin-Tian Hu. Comparative study of the transfection efficiency of commonly used viral vectors in rhesus monkey (Macaca mulatta) brains. Zoological Research, 2017, 38(2): 88-95.  doi: 10.24272/j.issn.2095-8137.2017.015
    [3] HE Xiong, ZHONG Zhao-Ming, CHE Yi. Locomotor activity and learning and memory abilities in Alzheimer’s disease induced by Aluminum in an acid environment in Zebrafish. Zoological Research, 2012, (2): 231-236.  doi: 10.3724/SP.J.1141.2012.02231
    [4] TANG Xiang-Hui, CAO Yue-Ling, YANG Ze-Xing, ZHAO Fu-Xian. Reproductive traits of polycystic ovary syndrome in female rhesus monkeys. Zoological Research, 2012, 33(1): 37-42.  doi: 10.3724/SP.J.1141.2012.01037
    [5] BIAN Hui, FAN Yao-Dong, GUO Li-Yun, YU Hua-Lin. A technique of rhesus monkey neural progenitor cells intravitreal transplant to rats. Zoological Research, 2012, 33(1): 85-88.  doi: 10.3724/SP.J.1141.2012.01085
    [6] DONG Jin-Run, GUO Li-Yun, QU Jia-Gui, QI Ren-Li, WANG Wen-Chao, XIAO Chun-Jie, WANG Zheng-Bo. Rhesus monkey embryonic stem cells differentiation, proliferation and allotransplantation. Zoological Research, 2012, 33(1): 43-48.  doi: 10.3724/SP.J.1141.2012.01043
    [7] HUANG Feng, DENG Hua-Ming, ZHU Miao-Miao, XIAO Fei, YANG Li, ZHANG Zai-Jun, XIAO. Inhibitory effect of ferulic acid on in?ammatory response in microglia induced by lipopolysaccharides. Zoological Research, 2011, 32(3): 311-316.  doi: 10.3724/SP.J.1141.2011.03311
    [8] GUO Xiang-Yu, JIN Li-Fang, JI Shao-Hui, JI Wei-Zhi. Rhesus monkey (Macaca mulatta) muller cells exhibit retinal stem/progenitor cell features in vitro. Zoological Research, 2011, 32(6): 611-616.  doi: 10.3724/SP.J.1141.2011.06616
    [9] JIN Li-Fang, JI Shao-Hui, YANG Ji-Feng, JI Wei-Zhi. Notch signaling dependent differentiation of cholangiocyte-likecells from rhesus monkey embryonic stem cells. Zoological Research, 2011, 32(4): 391-395.  doi: 10.3724/SP.J.1141.2011.04391
    [10] , , , , , , . Tissue Distribution of TRIM5α in Rhesus Monkey and Upregulation in Peripheral Blood Mononuclear Cell by Using Different Stimuli. Zoological Research, 2009, 30(4): 354-360.  doi: 10.3724/SP.J.1141.2009.04354
    [11] JIN Li-fang, JI Shao-hui, GUO Xiang-yu, WANG Xi-hong, JI Wei-zhi. Induction of Rhesus Monkey Embryonic Stem Cells into Hepatocyte-like Cells by a Three-step Method. Zoological Research, 2009, 30(5): 509-514.  doi: 10.3724/SP.J.1141.2009.05509
    [12] ZHANG Jing, WEI Qiang, LU Bin, CHEN Yong-chang, CHEN Hong-wei, LI Rong-rong. Influence of Different FGF2-expressing Feeder Layers on the Self-renewal and Pluripotency of Rhesus Monkey Embryonic Stem Cells. Zoological Research, 2008, 29(4): 405-414.  doi: 10.3724/SP.J.1141.2008.04405
    [13] LI Yi , HUANG Wei, ZHANG Xin, SU Bing , *. Construction of a cDNA Library of the Prefrontal Cortex of Rhesus Monkey. Zoological Research, 2006, 27(3): 325-330.
    [14] CAI Ke-jun, LI Ya-hui, LI Jian, HE Xie-chao, JI Wei-zhi. Effects of Extenders Varying in Osmolality on Rhesus Monkey (Macaca mulatta) Spermatozoa Cryopreservation. Zoological Research, 2005, 26(3): 305-310.
    [15] YU Hua-lin, LIU Yan-cheng, FAN Yao-dong, MA Yi-liu, FENG Zhong-tang. Effect of Morphine on γ-band of EEG Activity in the Orbital Frontal Cortex of Rhesus Monkey. Zoological Research, 2005, 26(4): 442-445.
    [16] PEI Yi-jin, JI Wei-zhi. Induced Differentiation and Apoptosis of Rhesus Monkey Embryonic Stem Cells. Zoological Research, 2003, 24(3): 161-167.
    [17] ZHENG Ping, ZOU Rou-jin, LIU Yi-xun. Possible Involvement of Plasminogen Activator in the Acquirement of Sperm Progressive Motility and the Regulation of PA and PAI-1 mRNA Expressions in Epididymis,Prostate and Seminal Vesical in Rhesus Monkey. Zoological Research, 2002, 23(1): 19-24.
    [18] YANG Sen-fu, LI Shao-dong, DU Jin-you, DUAN Xing-shen. The Breeding Study on Laboratory Rhesus Monkeys. Zoological Research, 1989, 10(zk): 53-59.
    [19] WANG Li-de, WU Jun, DUAN Xing-sheng. The Investigation on Parasites in Rhesus Monkey From Wild-Caught in South China. Zoological Research, 1989, 10(zk): 34-60.
    [20] ZHANG Mei-gui, DAI Yong-xiang, DONG De-xiang. Study on Frozen Preservation and Resuscitation and Biological Characteristics on Primary Dispersed Tissue Cell of Rhesus Monkey's Kidney. Zoological Research, 1983, 4(1): 95-101.
  • ZR-2020-088 Supplementary Materials and Methods.doc
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (1133) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return