Volume 41 Issue 5
Sep.  2020
Turn off MathJax
Article Contents
Zia Ur Rahman, Yu-Chun Li, Jiao-Yang Tian, Qing-Peng Kong. Exploring European ancestry among the Kalash population: a mitogenomic perspective. Zoological Research, 2020, 41(5): 552-556. doi: 10.24272/j.issn.2095-8137.2020.052
Citation: Zia Ur Rahman, Yu-Chun Li, Jiao-Yang Tian, Qing-Peng Kong. Exploring European ancestry among the Kalash population: a mitogenomic perspective. Zoological Research, 2020, 41(5): 552-556. doi: 10.24272/j.issn.2095-8137.2020.052

Exploring European ancestry among the Kalash population: a mitogenomic perspective

doi: 10.24272/j.issn.2095-8137.2020.052
Funds:  This work was supported by the Strategic Priority Research Program (XDA20040102), Second Tibetan Plateau Scientific Expedition and Research (STEP) (2019QZKK0607), National Natural Science Foundation of China (31620103907), Chinese Academy of Sciences (QYZDB-SSW-SMC020), and Yunnan Applied Basic Research Project (2017FB044)
More Information
  • With a population of around 4 000 individuals, the Kalash people have been living in the Hindu-Kush mountain valleys of present-day northern Pakistan for centuries. Due to their mysterious origin and fairer European complexion, the genetic history of this ethnic group has been investigated previously using different markers. To date, however, the maternal genetic architecture has not been systematically dissected based on high-resolution complete mitochondrial genomes (mitogenomes), making their maternal genetic history, especially their genetic connection with Europeans from a matrilineal perspective, unclear. To unravel this issue, we analyzed mitogenome data of 34 Kalash samples together with 6 075 individuals from across Eurasia. Our results indicated exclusive western Eurasian origin of the Kalash people, represented by eight haplogroups. Among these haplogroups, J2b1a7a and R0a5a (accounting for ~50% of the Kalash gene pool) displayed in situ differentiations in the Kalash and could be traced to the Mediterranean region. Age estimations suggested these haplogroups arose in the Kalash population ~2.26 and 3.01 thousand years ago (kya), a time frame consistent with the invasion of Alexander III of Macedon to the region. One possible explanation for the maternal genetic contribution from Europeans to the Kalash people would be the involvement of women in foreign campaigns of ancient Greek warfare, followed by a founder effect. Our study thus sheds important light on the genetic origin of the Kalash community of Pakistan.
  • loading
  • [1]
    Ayub Q, Mezzavilla M, Pagani L, Haber M, Mohyuddin A, Khaliq S, et al. 2015. The Kalash genetic isolate: ancient divergence, drift, and selection. The American Journal of Human Genetics, 96(5): 775−783. doi:  10.1016/j.ajhg.2015.03.012
    Cacopardo AS. 2011. Are the Kalasha really of Greek origin? The Legend of Alexander the Great and the Pre-Islamic World of the Hindu Kush. Acta Orientalia, 72: 47−92.
    Cann HM, de Toma C, Cazes L, Legrand MF, Morel V, Piouffre L, et al. 2002. A human genome diversity cell line panel. Science, 296(5566): 261−262.
    Demand NH. 2012. The Mediterranean Context of Early Greek History. New York: John Wiley & Sons.
    Di Gaetano C, Fiorito G, Ortu MF, Rosa F, Guarrera S, Pardini B, et al. 2014. Sardinians genetic background explained by runs of Homozygosity and genomic regions under positive selection. PLoS One, 9(3): e91237. doi:  10.1371/journal.pone.0091237
    Fan L, Yao YG. 2011. MitoTool: a web server for the analysis and retrieval of human mitochondrial DNA sequence variations. Mitochondrion, 11(2): 351−356. doi:  10.1016/j.mito.2010.09.013
    Fernandes DM, Mittnik A, Olalde I, Lazaridis I, Cheronet O, Rohland N, et al. 2020. The spread of steppe and Iranian-related ancestry in the islands of the western Mediterranean. Nature Ecology & Evolution, 4(3): 334−345.
    Firasat S, Khaliq S, Mohyuddin A, Papaioannou M, Tyler-Smith C, Underhill PA, et al. 2007. Y-chromosomal evidence for a limited Greek contribution to the Pathan population of Pakistan. European Journal of Human Genetics, 15(1): 121−126. doi:  10.1038/sj.ejhg.5201726
    Harney É, Nayak A, Patterson N, Joglekar P, Mushrif-Tripathy V, Mallick S, et al. 2019. Ancient DNA from the skeletons of Roopkund Lake reveals Mediterranean migrants in India. Nature Communication, 10(1): 3670. doi:  10.1038/s41467-019-11357-9
    Hellenthal G, Busby GBJ, Band G, Wilson JF, Capelli C, Falush D, et al. 2014. A genetic atlas of human admixture history. Science, 343(6172): 747−751. doi:  10.1126/science.1243518
    Lazaridis I, Mittnik A, Patterson N, Mallick S, Rohland N, Pfrengle S, et al. 2017. Genetic origins of the Minoans and Mycenaeans. Nature, 548(7666): 214−218. doi:  10.1038/nature23310
    Loman P. 2004. No woman no war: women’s participation in ancient Greek warfare. Greece & Rome, 51(1): 34−54.
    Mansoor A, Mazhar K, Khaliq S, Hameed A, Rehman S, Siddiqi S, et al. 2004. Investigation of the Greek ancestry of populations from northern Pakistan. Human Genetics, 114(5): 484−490. doi:  10.1007/s00439-004-1094-x
    Marcus JH, Posth C, Ringbauer H, Lai L, Skeates R, Sidore C, et al. 2020. Genetic history from the Middle Neolithic to present on the Mediterranean island of Sardinia. Nature Communications, 11(1): 939. doi:  10.1038/s41467-020-14523-6
    Olivieri LM, Marzaioli F, Passariello I, Iori E, Micheli R, Terrasi F, et al. 2019. A new revised chronology and cultural sequence of the Swat valley, Khyber Pakhtunkhwa (Pakistan) in the light of current excavations at Barikot (Bir-kot-ghwandai). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 456: 148−156. doi:  10.1016/j.nimb.2019.05.065
    Pala M, Olivieri A, Achilli A, Accetturo M, Metspalu E, Reidla M, et al. 2012. Mitochondrial DNA signals of late glacial recolonization of Europe from near eastern refugia. The American Journal of Human Genetics, 90(5): 915−924. doi:  10.1016/j.ajhg.2012.04.003
    Qamar R, Ayub Q, Mohyuddin A, Helgason A, Mazhar K, Mansoor A, et al. 2002. Y-chromosomal DNA variation in Pakistan. The American Journal of Human Genetics, 70(5): 1107−1124. doi:  10.1086/339929
    Quintana-Murci L, Chaix R, Wells RS, Behar DM, Sayar H, Scozzari R, et al. 2004. Where west meets east: the complex mtDNA landscape of the southwest and Central Asian corridor. The American Journal of Human Genetics, 74(5): 827−845. doi:  10.1086/383236
    Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, et al. 2002. Genetic structure of human populations. Science, 298(5602): 2381−2385. doi:  10.1126/science.1078311
    Soares P, Ermini L, Thomson N, Mormina M, Rito T, Röhl A, et al. 2009. Correcting for purifying selection: an improved human mitochondrial molecular clock. The American Journal of Human Genetics, 84(6): 740−759. doi:  10.1016/j.ajhg.2009.05.001
    Walsh S, Liu F, Ballantyne KN, van Oven M, Lao O, Kayser M. 2011. IrisPlex: a sensitive DNA tool for accurate prediction of blue and brown eye colour in the absence of ancestry information. Forensic Science International: Genetics, 5(3): 170−180. doi:  10.1016/j.fsigen.2010.02.004
  • Relative Articles

    [1] Olga Jovanović Glavaš, Paula Počanić, Vanja Lovrić, Lorena Derežanin, Zoran Tadić, Duje Lisičić. Morphological and ecological divergence in two populations of European glass lizard, Pseudopus apodus (Squamata: Anguidae). Zoological Research, 2020, 41(2): 172-181.  doi: 10.24272/j.issn.2095-8137.2020.025
    [2] Elena V. ANUFRIIEVA, Nickolai V. SHADRIN. Morphometric variability of Arctodiaptomus salinus (Copepoda) in the Mediterranean-Black Sea region. Zoological Research, 2015, 36(6): 328-336.  doi: 10.13918/j.issn.2095-8137.2015.5.328
    [3] Rui-Rui GAO, Yuan HUANG, Fu-Min LEI. Sequencing and analysis of the complete mitochondrial genome of Remiz consobrinus. Zoological Research, 2013, 34(3): 228-237.  doi: 10.11813/j.issn.0254-5853.2013.3.0228
    [4] Li GONG, Wei SHI, Li-Zhen SI, Xiao-Yu KONG. Rearrangement of mitochondrial genome in fishes. Zoological Research, 2013, 34(6): 666-673.  doi: 10.11813/j.issn.0254-5853.2013.6.0666
    [5] Fang ZHAO, Dun-Yuan HUANG, Xiao-Yan SUN, Qing-Hui SHI, Jia-Sheng HAO, Lan-Lan ZHANG, Qun YANG. The first mitochondrial genome for the butterfly family Riodinidae (Abisara fylloides) and its systematic implications. Zoological Research, 2013, 34(E5): 531109.  doi: 10.11813/j.issn.0254-5853.2013.E4-5.E109
    [6] CHEN Mei, TIAN Li-Li, SHI Qing-Hui, CAO Tian-Wen, HAO Jia-Sheng. Complete mitogenome of the Lesser Purple Emperor Apatura ilia (Lepidoptera: Nymphalidae: Apaturinae) and comparison with other nymphalid butterflies. Zoological Research, 2012, (2): 191-201.  doi: 10.3724/SP.J.1141.2012.02191
    [7] TIAN Li-Li, SUN Xiao-Yan, CHEN Mei, GAI Yong-Hua, HAO Jia-Sheng, YANG Qun. Complete mitochondrial genome of the Five-dot Sergeant Parathyma sulpitia (Nymphalidae: Limenitidinae) and its phylogenetic implications. Zoological Research, 2012, (2): 133-143.  doi: 10.3724/SP.J.1141.2012.02133
    [8] Qinghui SHI, Jing XIA, Xiaoyan SUN, Jiasheng HAO, Qun YANG. Complete mitogenome of the Painted Jezebel, Delias hyparete Linnaeus (Lepidoptera: Pieridae) and its comparison with other butterfly species. Zoological Research, 2012, 33(E5-6): 111-120.  doi: 10.3724/SP.J.1141.2012.E05-06E111
    [9] Liang ZHAO, Xingtao ZHANG, Xingkui TAO, Weiwei WANG, Ming LI. Preliminary analysis of the mitochondrial genome evolutionary pattern in primates. Zoological Research, 2012, 33(E3-4): 47-56.  doi: 10.3724/SP.J.1141.2012.E03-04E47
    [10] WANG Xiao-Can, SUN Xiao-Yan, SUN Qian-Qian, ZHANG Da-Xiu, HU Jing, YANG Qun, HAO. Complete mitochondrial genome of the laced fritillary Argyreus hyperbius (Lepidoptera: Nymphalidae). Zoological Research, 2011, 32(5): 465-475.  doi: 10.3724/SP.J.1141.2011.05465
    [11] YANG Hui, HUANG Yuan. Analysis of the complete mitochondrial genome sequence of Pielomastax zhengi. Zoological Research, 2011, 32(4): 353-362.  doi: 10.3724/SP.J.1141.2011.04353
    [12] YANG Chao, LEI Fu-Min, HUANG Yuan. Sequencing and Analysis of the Complete Mitochondrial Genome of Pseudopodoces humilis (Aves, Paridae). Zoological Research, 2010, 31(4): 333-344.  doi: 10.3724/SP.J.1141.2010.04333
    [13] ZHONG Hua-Ming, ZHANG Hong-Hai , *, SHA Wei-Lai, ZHANG Cheng-De, CHEN Yu-Cai. Complete Mitochondrial Genome of the Red Fox (Vuples vuples) and Phylogenetic Analysis with Other Canid Species. Zoological Research, 2010, 31(2): 122-130.  doi: 10.3724/SP.J.1141.2010.02122
    [14] GAO Jia, CHENG Chun-hua, HUANG Yuan. Analysis of Complete Mitochondrial Genome Sequence of Aeropus licenti Chang. Zoological Research, 2009, 30(6): 603-612.  doi: 10.3724/SP.J.1141.2009.06603
    [15] JIANG Feng, MIAO Yong-wang, LIU Bin, SHEN Xin, REN Jian-feng. Mitochondrial Introgressions into the Nuclear Genome of the Domestic Horse. Zoological Research, 2008, 29(6): 577-584.  doi: 10.3724/SP.J.1141.2008.06577
    [16] YE Wei, DANG Jiang-peng, XIE Ling-de, HUANG Yuan. Complete Mitochondrial Genome of Teleogryllus emma (Orthoptera: Gryllidae) with a New Gene Order in Orthoptera. Zoological Research, 2008, 29(3): 236-244.  doi: 10.3724/SP.J.1141.2008.03236
    [17] HAN De-min, ZHOU Kai-ya. Complete Sequence and Gene Organization of the Mitochondrial Genome of Tokay (Gekko gecko). Zoological Research, 2005, 26(2): 123-128.
    [18] SHI Yan-feng, SHAN Xiang-nian, LI Jian, ZHANG Hai-jun, ZHENG Ai-ling. Phylogenetic Relationships of Seven Cetartiodactyla Species Inferred from Mitochondrial Genome. Zoological Research, 2003, 24(5): 331-336.
    [19] SUN Hong-ying, ZHOU Kai-ya, SONG Da-xiang. Mitochondrial Genome and Phylogenetic Reconstruction of Arthropods. Zoological Research, 2003, 24(6): 467-479.
    [20] LI Qing-wei, CHEN Yi-feng. Enlarge The Mitochondrial Genome in Bird. Zoological Research, 1996, 17(4): 376-384.
  • ZR-2020-022 Supplementary material.pdf
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (930) PDF downloads(95) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint