Volume 41 Issue 5
Sep.  2020
Turn off MathJax
Article Contents
Qiong-Ya Zhao, Ling-Hong Ge, Kun Zhang, Hai-Feng Chen, Xin-Xin Zhan, Yue Yang, Qing-Lin Dang, Yi Zheng, Huai-Bin Zhou, Jian-Xin Lyu, He-Zhi Fang. Assessment of mitochondrial function in metabolic dysfunction-associated fatty liver disease using obese mouse models. Zoological Research, 2020, 41(5): 539-551. doi: 10.24272/j.issn.2095-8137.2020.051
Citation: Qiong-Ya Zhao, Ling-Hong Ge, Kun Zhang, Hai-Feng Chen, Xin-Xin Zhan, Yue Yang, Qing-Lin Dang, Yi Zheng, Huai-Bin Zhou, Jian-Xin Lyu, He-Zhi Fang. Assessment of mitochondrial function in metabolic dysfunction-associated fatty liver disease using obese mouse models. Zoological Research, 2020, 41(5): 539-551. doi: 10.24272/j.issn.2095-8137.2020.051

Assessment of mitochondrial function in metabolic dysfunction-associated fatty liver disease using obese mouse models

doi: 10.24272/j.issn.2095-8137.2020.051
#Authors contributed equally to this work
Funds:  This research was supported by the National Natural Science Foundation of China (Key Program: 81830071), Zhejiang Provincial Natural Science Foundation of China (LY19H040004 and Key Program: LR20H200001), and Zhejiang Provincial Health Science and Technology Plan (2015KYB238)
More Information
  • Corresponding author: E-mail: jxlu313@163.comFangH@wmu.edu.cn
  • Received Date: 2020-03-11
  • Accepted Date: 2020-07-13
  • Available Online: 2020-08-11
  • Publish Date: 2020-09-18
  • Metabolic dysfunction-associated fatty liver disease (MAFLD) is characterized by deregulated hepatic lipid metabolism; however, the association between MAFLD development and mitochondrial dysfunction has yet to be confirmed. Herein, we employed high-resolution respirometry, blue native polyacrylamide gel electrophoresis-based in-gel activity measurement and immunoblot analysis to assess mitochondrial function in obesity-induced mouse models with varying degrees of MAFLD. Results showed a slight but significant decrease in hepatic mitochondrial respiration in some MAFLD mice compared to mice fed a standard diet. However, the activities and levels of mitochondrial oxidative phosphorylation complexes remained unchanged during obesity-induced MAFLD progression. These results suggest that mitochondrial function, particularly oxidative phosphorylation, was mildly affected during obesity-induced MAFLD development. Moreover, transcriptome profiling of mouse and human liver tissues with varying degrees of MAFLD revealed that the decreased activation of mitochondria-related pathways was only associated with MAFLD of a high histological grade, whereas the major regulators of mitochondrial biogenesis were not altered in mice or humans during MAFLD development. Collectively, our results suggest that impaired hepatic mitochondrial function is not closely associated with obesity-induced MAFLD. Therefore, therapeutic strategies targeting mitochondria for the treatment of MAFLD should be reconsidered.
  • #Authors contributed equally to this work
  • loading
  • [1]
    Bechmann LP, Gastaldelli A, Vetter D, Patman GL, Pascoe L, Hannivoort RA, et al. 2012a. Glucokinase links Krüppel-like factor 6 to the regulation of hepatic insulin sensitivity in nonalcoholic fatty liver disease. Hepatology, 55(4): 1083−1093. doi: 10.1002/hep.24793
    Bechmann LP, Hannivoort RA, Gerken G, Hotamisligil GS, Trauner M, Canbay A. 2012b. The interaction of hepatic lipid and glucose metabolism in liver diseases. Journal of Hepatology, 56(4): 952−964. doi: 10.1016/j.jhep.2011.08.025
    Begriche K, Igoudjil A, Pessayre D, Fromenty B. 2006. Mitochondrial dysfunction in NASH: causes, consequences and possible means to prevent it. Mitochondrion, 6(1): 1−28. doi: 10.1016/j.mito.2005.10.004
    Borrelli A, Bonelli P, Tuccillo FM, Goldfine ID, Evans JL, Buonaguro FM, et al. 2018. Role of gut microbiota and oxidative stress in the progression of non-alcoholic fatty liver disease to hepatocarcinoma: current and innovative therapeutic approaches. Redox Biology, 15: 467−479. doi: 10.1016/j.redox.2018.01.009
    Eslam M, Sanyal AJ, George J, International Consensus Panel. 2020. MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology, 158(7): 1999−2014. doi: 10.1053/j.gastro.2019.11.312
    Fabbrini E, Mohammed BS, Magkos F, Korenblat KM, Patterson BW, Klein S. 2008. Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease. Gastroenterology, 134(2): 424−431. doi: 10.1053/j.gastro.2007.11.038
    Fang HZ, Hu NQ, Zhao QY, Wang BQ, Zhou HB, Fu QZ, et al. 2018. mtDNA Haplogroup N9a increases the risk of type 2 diabetes by altering mitochondrial function and intracellular mitochondrial signals. Diabetes, 67(7): 1441−1453. doi: 10.2337/db17-0974
    Franko A, Von Kleist-Retzow JC, Neschen S, Wu MY, Schommers P, Bose M, et al. 2014. Liver adapts mitochondrial function to insulin resistant and diabetic states in mice. Journal of Hepatology, 60(4): 816−823. doi: 10.1016/j.jhep.2013.11.020
    Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. 2018. Mechanisms of NAFLD development and therapeutic strategies. Nature Medicine, 24(7): 908−922. doi: 10.1038/s41591-018-0104-9
    Garcia-Ruiz C, Baulies A, Mari M, Garcia-Rovés PM, Fernandez-Checa JC. 2013. Mitochondrial dysfunction in non-alcoholic fatty liver disease and insulin resistance: cause or consequence?. Free Radical Research, 47(11): 854−868. doi: 10.3109/10715762.2013.830717
    Garcia-Ruiz I, Rodríguez-Juan C, Díaz-Sanjuan T, Del Hoyo P, Colina F, Muñoz-Yagüe T, et al. 2006. Uric acid and anti-TNF antibody improve mitochondrial dysfunction in ob/ob mice. Hepatology, 44(3): 581−591. doi: 10.1002/hep.21313
    Hansen HH, Feigh M, Veidal SS, Rigbolt KT, Vrang N, Fosgerau K. 2017. Mouse models of nonalcoholic steatohepatitis in preclinical drug development. Drug Discovery Today, 22(11): 1707−1718. doi: 10.1016/j.drudis.2017.06.007
    Hijona E, Hijona L, Arenas JI, Bujanda L. 2010. Inflammatory mediators of hepatic steatosis. Mediators of Inflammation, 2010: 837419.
    Ichiba M, Maeta Y, Mukoyama T, Saeki T, Yasui S, Kanbe T, et al. 2003. Expression of 8-hydroxy-2'-deoxyguanosine in chronic liver disease and hepatocellular carcinoma. Liver International, 23(5): 338−345. doi: 10.1034/j.1478-3231.2003.00868.x
    Kanuri G, Bergheim I. 2013. In vitro and in vivo models of non-alcoholic fatty liver disease (NAFLD). International Journal of Molecular Sciences, 14(6): 11963−11980. doi: 10.3390/ijms140611963
    Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. 2005. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology, 41(6): 1313−1321. doi: 10.1002/hep.20701
    Kohli R, Feldstein AE. 2011. NASH animal models: are we there yet?. Journal of Hepatology, 55(4): 941−943. doi: 10.1016/j.jhep.2011.04.010
    Koliaki C, Szendroedi J, Kaul K, Jelenik T, Nowotny P, Jankowiak F, et al. 2015. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metabolism, 21(5): 739−746. doi: 10.1016/j.cmet.2015.04.004
    Kopec KL, Burns D. 2011. Nonalcoholic fatty liver disease: a review of the spectrum of disease, diagnosis, and therapy. Nutrition in Clinical Practice, 26(5): 565−576. doi: 10.1177/0884533611419668
    Krishnan KC, Kurt Z, Barrere-Cain R, Sabir S, Das A, Floyd R, et al. 2018. Integration of multi-omics data from mouse diversity panel highlights mitochondrial dysfunction in non-alcoholic fatty liver disease. Cell Systems, 6(1): 103−115. doi: 10.1016/j.cels.2017.12.006
    Liang JQ, Teoh N, Xu LX, Pok S, Li XC, Chu ESH, et al. 2018. Dietary cholesterol promotes steatohepatitis related hepatocellular carcinoma through dysregulated metabolism and calcium signaling. Nature Communications, 9(1): 4490. doi: 10.1038/s41467-018-06931-6
    Lund MT, Kristensen M, Hansen M, Tveskov L, Floyd AK, Støckel M, et al. 2016. Hepatic mitochondrial oxidative phosphorylation is normal in obese patients with and without type 2 diabetes. The Journal of Physiology, 594(15): 4351−4358. doi: 10.1113/JP272105
    Lund MT, Larsen S, Hansen M, Courraud J, Floyd AK, Stockel M, et al. 2018. Mitochondrial respiratory capacity remains stable despite a comprehensive and sustained increase in insulin sensitivity in obese patients undergoing gastric bypass surgery. Acta Physiologica, 223(1): e13032. doi: 10.1111/apha.13032
    Murphy MP, Hartley RC. 2018. Mitochondria as a therapeutic target for common pathologies. Nature Reviews Drug Discovery, 17(12): 865−886. doi: 10.1038/nrd.2018.174
    Neuschwander-Tetri BA. 2010. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites. Hepatology, 52(2): 774−788. doi: 10.1002/hep.23719
    Paradies G, Paradies V, Ruggiero FM, Petrosillo G. 2014. Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease. World Journal of Gastroenterology, 20(39): 14205−14218. doi: 10.3748/wjg.v20.i39.14205
    Peng KY, Watt MJ, Rensen S, Greve JW, Huynh K, Jayawardana KS, et al. 2018. Mitochondrial dysfunction-related lipid changes occur in nonalcoholic fatty liver disease progression. Journal of Lipid Research, 59(10): 1977−1986. doi: 10.1194/jlr.M085613
    Pérez-Carreras M, Del Hoyo P, Martin MA, Rubio JC, Martin A, Castellano G, et al. 2003. Defective hepatic mitochondrial respiratory chain in patients with nonalcoholic steatohepatitis. Hepatology, 38(4): 999−1007. doi: 10.1002/hep.1840380426
    Rector RS, Thyfault JP, Uptergrove GM, Morris EM, Naples SP, Borengasser SJ, et al. 2010. Mitochondrial dysfunction precedes insulin resistance and hepatic steatosis and contributes to the natural history of non-alcoholic fatty liver disease in an obese rodent model. Journal of Hepatology, 52(5): 727−736. doi: 10.1016/j.jhep.2009.11.030
    Rolo AP, Teodoro JS, Palmeira CM. 2012. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radical Biology and Medicine, 52(1): 59−69. doi: 10.1016/j.freeradbiomed.2011.10.003
    Sanches SC, Ramalho LN, Augusto MJ, Da Silva DM, Ramalho FS. 2015. Nonalcoholic steatohepatitis: a search for factual animal models. BioMed Research International, 2015: 574832.
    Satapati S, Kucejova B, Duarte JAG, Fletcher JA, Reynolds L, Sunny NE, et al. 2015. Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver. The Journal of Clinical Investigation, 125(12): 4447−4462. doi: 10.1172/JCI82204
    Satapati S, Sunny NE, Kucejova B, Fu XR, He TT, Méndez-Lucas A, et al. 2012. Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver. Journal of Lipid Research, 53(6): 1080−1092. doi: 10.1194/jlr.M023382
    Schöpf B, Schäfer G, Weber A, Talasz H, Eder IE, Klocker H, et al. 2016. Oxidative phosphorylation and mitochondrial function differ between human prostate tissue and cultured cells. The FEBS Journal, 283(11): 2181−2196. doi: 10.1111/febs.13733
    Seki S, Kitada T, Yamada T, Sakaguchi H, Nakatani K, Wakasa K. 2002. In situ detection of lipid peroxidation and oxidative DNA damage in non-alcoholic fatty liver diseases. Journal of Hepatology, 37(1): 56−62. doi: 10.1016/S0168-8278(02)00073-9
    Silva AM, Oliveira PJ. 2012. Evaluation of respiration with clark type electrode in isolated mitochondria and permeabilized animal cells. In: Palmeira CM, Moreno AJ. Mitochondrial Bioenergetics. New York: Humana Press, 7–24.
    Simões ICM, Fontes A, Pinton P, Zischka H, Wieckowski MR. 2018. Mitochondria in non-alcoholic fatty liver disease. The International Journal of Biochemistry & Cell Biology, 95: 93−99.
    Song BJ, Abdelmegeed MA, Henderson LE, Yoo SH, Wan J, Purohit V, et al. 2013. Increased nitroxidative stress promotes mitochondrial dysfunction in alcoholic and nonalcoholic fatty liver disease. Oxidative Medicine and Cellular Longevity, 2013: 781050.
    Stirone C, Duckles SP, Krause DN, Procaccio V. 2005. Estrogen increases mitochondrial efficiency and reduces oxidative stress in cerebral blood vessels. Molecular Pharmacology, 68(4): 959−965. doi: 10.1124/mol.105.014662
    Sun DY, Li B, Qiu RY, Fang HZ, Lyu J. 2016. Cell type-specific modulation of respiratory Chain Supercomplex organization. International Journal of Molecular Sciences, 17(6): 926. doi: 10.3390/ijms17060926
    Takahashi Y, Soejima Y, Fukusato T. 2012. Animal models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World Journal of Gastroenterology, 18(19): 2300−2308. doi: 10.3748/wjg.v18.i19.2300
    Tanaka S, Miyanishi K, Kobune M, Kawano Y, Hoki T, Kubo T, et al. 2013. Increased hepatic oxidative DNA damage in patients with nonalcoholic steatohepatitis who develop hepatocellular carcinoma. Journal of Gastroenterology, 48(11): 1249−1258. doi: 10.1007/s00535-012-0739-0
    Tilg H, Moschen A. 2010. Update on nonalcoholic fatty liver disease: genes involved in nonalcoholic fatty liver disease and associated inflammation. Current Opinion in Clinical Nutrition and Metabolic Care, 13(4): 391−396. doi: 10.1097/MCO.0b013e32833a87cc
    Valdinocci D, Simões RF, Kovarova J, Cunha-Oliveira T, Neuzil J, Pountney DL. 2019. Intracellular and intercellular mitochondrial dynamics in Parkinson's disease. Frontiers in Neuroscience, 13: 930. doi: 10.3389/fnins.2019.00930
    Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, et al. 2018. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nature Reviews Gastroenterology & Hepatology, 15(1): 11−20.
    Zhdanov AV, Waters AHC, Golubeva AV, Dmitriev RI, Papkovsky DB. 2014. Availability of the key metabolic substrates dictates the respiratory response of cancer cells to the mitochondrial uncoupling. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1837(1): 51−62. doi: 10.1016/j.bbabio.2013.07.008
    Zhou F, Zhou JH, Wang WX, Zhang XJ, Ji YX, Zhang P, et al. 2019. Unexpected rapid increase in the burden of NAFLD in China From 2008 to 2018: a systematic review and meta-analysis. Hepatology, 70(4): 1119−1133. doi: 10.1002/hep.30702
    Zhu MZ, Ji GZ, Jin G, Yuan ZB. 2009. Different responsiveness to a high-fat/cholesterol diet in two inbred mice and underlying genetic factors: a whole genome microarray analysis. Nutrition & Metabolism, 6(1): 43.
  • ZR-2020-051.zip
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (978) PDF downloads(161) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint