Volume 41 Issue 2
Mar.  2020
Turn off MathJax
Article Contents
Ning Zheng, Zhi-Zhong Wang, Song-Wei Wang, Fang-Jia Yang, Xu-Tao Zhu, Chen Lu, Anne Manyande, Xiao-Ping Rao, Fu-Qiang Xu. Co-localization of two-color rAAV2-retro confirms the dispersion characteristics of efferent projections of mitral cells in mouse accessory olfactory bulb. Zoological Research, 2020, 41(2): 148-156. doi: 10.24272/j.issn.2095-8137.2020.020
Citation: Ning Zheng, Zhi-Zhong Wang, Song-Wei Wang, Fang-Jia Yang, Xu-Tao Zhu, Chen Lu, Anne Manyande, Xiao-Ping Rao, Fu-Qiang Xu. Co-localization of two-color rAAV2-retro confirms the dispersion characteristics of efferent projections of mitral cells in mouse accessory olfactory bulb. Zoological Research, 2020, 41(2): 148-156. doi: 10.24272/j.issn.2095-8137.2020.020

Co-localization of two-color rAAV2-retro confirms the dispersion characteristics of efferent projections of mitral cells in mouse accessory olfactory bulb

doi: 10.24272/j.issn.2095-8137.2020.020
Funds:  This work was supported by the National Natural Science Foundation of China (31400946, 31771156, 91632303/H09, 91732304 and 31830035) and Strategic Priority Research Program of the Chinese Academy of Sciences (XDB32030200)
More Information
  • The accessory olfactory bulb (AOB), located at the posterior dorsal aspect of the main olfactory bulb (MOB), is the first brain relay of the accessory olfactory system (AOS), which can parallelly detect and process volatile and nonvolatile social chemosignals and mediate different sexual and social behaviors with the main olfactory system (MOS). However, due to its anatomical location and absence of specific markers, there is a lack of research on the internal and external neural circuits of the AOB. This issue was addressed by single-color labeling and fluorescent double labeling using retrograde rAAVs injected into the bed nucleus of the stria terminalis (BST), anterior cortical amygdalar area (ACo), medial amygdaloid nucleus (MeA), and posteromedial cortical amygdaloid area (PMCo) in mice. We demonstrated the effectiveness of this AOB projection neuron labeling method and showed that the mitral cells of the AOB exhibited efferent projection dispersion characteristics similar to those of the MOB. Moreover, there were significant differences in the number of neurons projected to different brain regions, which indicated that each mitral cell in the AOB could project to a different number of neurons in different cortices. These results provide a circuitry basis to help understand the mechanism by which pheromone information is encoded and decoded in the AOS.

  • #Authors contributed equally to this work
  • loading
  • [1]
    Ackels T, Drose DR, Spehr M. 2016. In-depth physiological analysis of defined cell populations in acute tissue slices of the mouse vomeronasal organ. Journal of Visuallized Experiments, 115: e54517.
    Breer H, Fleischer J, Strotmann J. 2006. The sense of smell: multiple olfactory subsystems. Cellular and Molecular Life Sciences, 63: 1465−1475. doi:  10.1007/s00018-006-6108-5
    Doving KB, Trotier D. 1998. Structure and function of the vomeronasal organ. Journal of Experimental Biologyl, 201: 2913−2925.
    Dulac C, Torello AT. 2003. Molecular detection of pheromone signals in mammals: from genes to behaviour. Nature Reviews Neuroscience, 4: 551−562. doi:  10.1038/nrn1140
    Dulac C, Wagner S. 2006. Genetic analysis of brain circuits underlying pheromone signaling. Annual Review of Genetics, 40: 449−467. doi:  10.1146/annurev.genet.39.073003.093937
    Ghosh S, Larson SD, Hefzi H, Marnoy Z, Cutforth T, Dokka K, Baldwin KK. 2011. Sensory maps in the olfactory cortex defined by long-range viral tracing of single neurons. Nature, 472: 217−220. doi:  10.1038/nature09945
    Halpern M, Martinez-Marcos A. 2003. Structure and function of the vomeronasal system: an update. Progress in Neurobiology, 70(3): 245−318. doi:  10.1016/S0301-0082(03)00103-5
    Holy TE. 2018. The accessory olfactory system: Innately specialized or microcosm of mammalian circuitry?. Annual review of neuroscience, 41: 501−525. doi:  10.1146/annurev-neuro-080317-061916
    Kang N, Baum MJ, Cherry JA. 2009. A direct main olfactory bulb projection to the 'vomeronasal' amygdala in female mice selectively responds to volatile pheromones from males. The European Journal of Neuroscience, 29(3): 624−634. doi:  10.1111/j.1460-9568.2009.06638.x
    Krieger J, Schmitt A, Lobel D, Gudermann T, Schultz G, Breer H, Boekhoff I. 1999. Selective activation of G protein subtypes in the vomeronasal organ upon stimulation with urine-derived compounds. The Journal of Biological Chemistry, 274(8): 4655−4662. doi:  10.1074/jbc.274.8.4655
    Larriva-Sahd J. 2008. The accessory olfactory bulb in the adult rat: a cytological study of its cell types, neuropil, neuronal modules, and interactions with the main olfactory system. The Journal of Comparative Neurology, 510(3): 309−350. doi:  10.1002/cne.21790
    Leinders-Zufall T, Brennan P, Widmayer P, S PC, Maul-Pavicic A, Jager M, Li XH, Breer H, Zufall F, Boehm T. 2004. MHC class I peptides as chemosensory signals in the vomeronasal organ. Science, 306(5698): 1033−1037. doi:  10.1126/science.1102818
    Leinders-Zufall T, Lane AP, Puche AC, Ma W, Novotny MV, Shipley MT, Zufall F. 2000. Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature, 405: 792−796. doi:  10.1038/35015572
    Marking S, Krosnowski K, Ogura T, Lin W. 2017. Dichotomous distribution of putative cholinergic interneurons in mouse accessory olfactory bulb. Frontiers in Neuroanatomy, 11: 10.
    Miyamichi K, Amat F, Moussavi F, Wang C, Wickersham I, Wall NR, Taniguchi H, Tasic B, Huang ZJ, He Z, Callaway EM, Horowitz MA, Luo L. 2011. Cortical representations of olfactory input by trans-synaptic tracing. Nature, 472: 191−196. doi:  10.1038/nature09714
    Mohedano-Moriano A, Pro-Sistiaga P, Ubeda-Banon I, Crespo C, Insausti R, Martinez-Marcos A. 2007. Segregated pathways to the vomeronasal amygdala: differential projections from the anterior and posterior divisions of the accessory olfactory bulb. The European Journal of Neuroscience, 25(7): 2065−2080. doi:  10.1111/j.1460-9568.2007.05472.x
    Mohrhardt J, Nagel M, Fleck D, Ben-Shaul Y, Spehr M. 2018. Signal detection and coding in the accessory olfactory system. Chemical Senses, 43(9): 667−695. doi:  10.1093/chemse/bjy061
    Moriya-Ito K, Endoh K, Fujiwara-Tsukamoto Y, Ichikawa M. 2013. Three-dimensional reconstruction of electron micrographs reveals intrabulbar circuit differences between accessory and main olfactory bulbs. Frontiers in Neuroanatomy, 7: 5.
    Nagayama S, Enerva A, Fletcher ML, Masurkar AV, Igarashi KM, Mori K, Chen WR. 2010. Differential axonal projection of mitral and tufted cells in the mouse main olfactory system. Frontiers in Neural Circuits, 4: 120.
    Perez-Gomez A, Bleymehl K, Stein B, Pyrski M, Birnbaumer L, Munger SD, Leinders-Zufall T, Zufall F, Chamero P. 2015. Innate predator odor aversion driven by parallel olfactory subsystems that converge in the ventromedial hypothalamus. Current Biology, 25(10): 1340−1346. doi:  10.1016/j.cub.2015.03.026
    Riviere S, Challet L, Fluegge D, Spehr M, Rodriguez I. 2009. Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature, 459: 574−577. doi:  10.1038/nature08029
    Sosulski DL, Bloom ML, Cutforth T, Axel R, Datta SR. 2011. Distinct representations of olfactory information in different cortical centres. Nature, 472: 213−216. doi:  10.1038/nature09868
    Spehr M, Spehr J, Ukhanov K, Kelliher KR, Leinders-Zufall T, Zufall F. 2006. Parallel processing of social signals by the mammalian main and accessory olfactory systems. Cellular Molecular Life Sciences, 63: 1476−1484. doi:  10.1007/s00018-006-6109-4
    Su CY, Menuz K, Carlson JR. 2009. Olfactory perception: receptors, cells, and circuits. Cell, 139: 45−59. doi:  10.1016/j.cell.2009.09.015
    Takami S, Graziadei PP. 1991. Light microscopic Golgi study of mitral/tufted cells in the accessory olfactory bulb of the adult rat. The Journal of Comparative Neurology, 311(1): 65−83. doi:  10.1002/cne.903110106
    Urban NN, Castro JB. 2005. Tuft calcium spikes in accessory olfactory bulb mitral cells. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 25(20): 5024−5028. doi:  10.1523/JNEUROSCI.0297-05.2005
    Vargas-Barroso V, Ordaz-Sanchez B, Pena-Ortega F, Larriva-Sahd JA. 2015. Electrophysiological evidence for a direct link between the main and accessory olfactory bulbs in the adult rat. Frontiers in Neuroscience, 9: 518.
    von Campenhausen H, Mori K. 2000. Convergence of segregated pheromonal pathways from the accessory olfactory bulb to the cortex in the mouse. The European Journal of Neuroscience, 12(1): 33−46. doi:  10.1046/j.1460-9568.2000.00879.x
    Yokosuka M. 2012. Histological properties of the glomerular layer in the mouse accessory olfactory bulb. Experimental Animals, 61(1): 13−24. doi:  10.1538/expanim.61.13
    Yoles-Frenkel M, Kahan A, Ben-Shaul Y. 2018. Temporal response properties of accessory olfactory bulb neurons: limitations and opportunities for decoding. The Journal of Neuroscience, 38(21): 4957−4976. doi:  10.1523/JNEUROSCI.2091-17.2018
    Yonekura J, Yokoi M. 2008. Conditional genetic labeling of mitral cells of the mouse accessory olfactory bulb to visualize the organization of their apical dendritic tufts. Molecular and Cellular Neuroscience, 37(4): 708−718. doi:  10.1016/j.mcn.2007.12.016
    Zhu X, Lin K, Liu Q, Yue X, Mi H, Huang X, He X, Wu R, Zheng D, Wei D, Jia L, Wang W, Manyande A, Wand J, Zhang Z, Xu F. 2020. Rabies virus pseudotyped with CVS-N2C glycoprotein as a powerful tool for retrograde neuronal network tracing. Neuroscience Bulletin, 36(3): 202−216. doi:  10.1007/s12264-019-00423-3
  • Relative Articles

    [1] Zhao-Peng Dong, Qian Wang, Zhen-Jie Zhang, Michael J. Carr, Dong Li, Wei-Feng Shi. Murine model of acute myocarditis and cerebral cortical neuron edema induced by coxsackievirus B4. Zoological Research, 2018, 39(1): 52-57.  doi: 10.24272/j.issn.2095-8137.2017.056
    [2] HUANG Ya-Ling, YANG Qing, JIANG Chun, XIA Can-Wei. Two distinct parts within the song of Phoenicurus auroreus, and individual identification on the basis of the song. Zoological Research, 2012, 33(3): 249-254.  doi: 10.3724/SP.J.1141.2012.03249
    [3] Oksana P Tuchina, Valery V Zhukov, Victor Benno Meyer-Rochow. Afferent and efferent pathways in the visual system of the freshwater snail Planorbarius corneus. Zoological Research, 2011, 32(4): 403-420.  doi: 10.3724/SP.J.1141.2011.04403
    [4] WEI Qin-guo, ZHANG Hong-hai, GUO Bing-ran. Histological Structure Difference of Dog’s Olfactory Bulb Between Different Age and Sex. Zoological Research, 2008, 29(5): 537-545.  doi: 10.3724/SP.J.1141.2008.05537
    [5] LUO Feng , LI An-an, WU Fei-jian, LIANG Bing, ZHANG Shu-yi , *, CHEN Qi-cai , *. Basic Properties of Neuron Response to Sound Stimulation in the Inferior Colliculus of Rhinolophus pusillus. Zoological Research, 2006, 27(2): 202-208.
    [6] ZHANG Ke-zhi, ZHOU Chang-le, YOU Zhi-ning. Homology Neural Cluster Binding Mechanism on the Basis of Self-organization. Zoological Research, 2004, 25(6): 491-496.
    [7] ZHANG Xin-wen, ZENG Shao-ju, LI Jia, MA Jun, ZUO Ming-xue. Projections of the High Vocal Center and Its Shell,and Distribution of Substance P in the Vocal Auditory Center in Emberiza elegans. Zoological Research, 2003, 24(2): 116-120.
    [8] CHEN Bing, KANG Le. Supercooling Point Shift of Pea Leafminer Pupae with Latitude and Its Implication for the Population Dispersion. Zoological Research, 2003, 24(3): 168-172.
    [9] ZHANG Xiao-Ai, ZHAO Liang, XU Zhi-Qing. Several Basis Problems of Avian Ecological Energetics. Zoological Research, 2001, 22(3): 231-238.
    [10] LUO Jing, YANG Jun-xing, ZHANG Ya-ping. Genetic Basis of Fish Diversity. Zoological Research, 2000, 21(2): 158-164.
    [11] HUANG Yao-de, HONG Xiu-hua, HE Yu-hong, KANG Chao-sheng, CAI Jing-xia, WANG Jian-hong. Substance P-Like Immunoreactive Neurons in The Cholinergic Cortical Projection Neuron Areas of The Basal Forebrain in The Cat. Zoological Research, 1999, 20(1): 26-31.
    [12] ZUO Ming-xue. The Immunohistochemical Studies of Projections Linking The Auditory Thalamus and Neurosecretory Hypothalamus in The Brain of Non-Songbird. Zoological Research, 1997, 18(3): 319-323.
    [13] XIAO Wu-han, SU Bing, WU Chun-hua, ZHANG Ya-ping. A Simple Method For Getting Digoxigenin Labeling Proble of mtDNA From Ovary of Fish. Zoological Research, 1997, 18(1): 58-727.
    [14] WANG Chang-gui, YU Hong-guo, WANG Cui-zhen. Observations on The Biology Characteristics of Argiope bruennichi. Zoological Research, 1995, 16(1): 30-424.
    [15] LI Zheng-yue, DENG Wei, GU Shan. Preliminary Study on Aggregation and Dispersion Tendencies of Natural Population of Green Tobacco Aphid. Zoological Research, 1993, 14(4): 313-317.
    [16] TONG Xue-song, QIAN Zu-qi. An Observation on the Characteristics of Luehdorfia chinensis Leech. Zoological Research, 1992, 13(1): 0-24.
    [17] SHAN Xiang-nian, HE Lin, WANG Shi-jun. Microcells,Their Preparation and Biological Characteristics. Zoological Research, 1986, 7(2): 177-182.
    [18] YE Zhi-zhang, PENG Yan-zhang, ZHANG Yao-ping. The Chief Characteristics of the Alimentary System of Rhinopithecus. Zoological Research, 1985, 6(3): 277-285.
    [19] DONG Xin-wen. Organization of the nucleus Raphe Dorsalis and its Projection to the Caudatoputamen Complex. Zoological Research, 1985, 6(4): 319-328.
    [20] LIU Ci-quan, WANG Ying, ZHOU Ming-pei, LI Jing-yan. Studies of 5S RNA Secondary Structure 1.A microcomputer method on the basis of the Fox model. Zoological Research, 1984, 5(1): 79-90.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (1766) PDF downloads(134) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint