Volume 41 Issue 2
Mar.  2020
Turn off MathJax
Article Contents
Ning Zheng, Zhi-Zhong Wang, Song-Wei Wang, Fang-Jia Yang, Xu-Tao Zhu, Chen Lu, Anne Manyande, Xiao-Ping Rao, Fu-Qiang Xu. Co-localization of two-color rAAV2-retro confirms the dispersion characteristics of efferent projections of mitral cells in mouse accessory olfactory bulb. Zoological Research, 2020, 41(2): 148-156. doi: 10.24272/j.issn.2095-8137.2020.020
Citation: Ning Zheng, Zhi-Zhong Wang, Song-Wei Wang, Fang-Jia Yang, Xu-Tao Zhu, Chen Lu, Anne Manyande, Xiao-Ping Rao, Fu-Qiang Xu. Co-localization of two-color rAAV2-retro confirms the dispersion characteristics of efferent projections of mitral cells in mouse accessory olfactory bulb. Zoological Research, 2020, 41(2): 148-156. doi: 10.24272/j.issn.2095-8137.2020.020

Co-localization of two-color rAAV2-retro confirms the dispersion characteristics of efferent projections of mitral cells in mouse accessory olfactory bulb

doi: 10.24272/j.issn.2095-8137.2020.020
#Authors contributed equally to this work
Funds:  This work was supported by the National Natural Science Foundation of China (31400946, 31771156, 91632303/H09, 91732304 and 31830035) and Strategic Priority Research Program of the Chinese Academy of Sciences (XDB32030200)
More Information
  • The accessory olfactory bulb (AOB), located at the posterior dorsal aspect of the main olfactory bulb (MOB), is the first brain relay of the accessory olfactory system (AOS), which can parallelly detect and process volatile and nonvolatile social chemosignals and mediate different sexual and social behaviors with the main olfactory system (MOS). However, due to its anatomical location and absence of specific markers, there is a lack of research on the internal and external neural circuits of the AOB. This issue was addressed by single-color labeling and fluorescent double labeling using retrograde rAAVs injected into the bed nucleus of the stria terminalis (BST), anterior cortical amygdalar area (ACo), medial amygdaloid nucleus (MeA), and posteromedial cortical amygdaloid area (PMCo) in mice. We demonstrated the effectiveness of this AOB projection neuron labeling method and showed that the mitral cells of the AOB exhibited efferent projection dispersion characteristics similar to those of the MOB. Moreover, there were significant differences in the number of neurons projected to different brain regions, which indicated that each mitral cell in the AOB could project to a different number of neurons in different cortices. These results provide a circuitry basis to help understand the mechanism by which pheromone information is encoded and decoded in the AOS.

  • #Authors contributed equally to this work
  • loading
  • [1]
    Ackels T, Drose DR, Spehr M. 2016. In-depth physiological analysis of defined cell populations in acute tissue slices of the mouse vomeronasal organ. Journal of Visuallized Experiments, 115: e54517.
    Breer H, Fleischer J, Strotmann J. 2006. The sense of smell: multiple olfactory subsystems. Cellular and Molecular Life Sciences, 63: 1465−1475. doi: 10.1007/s00018-006-6108-5
    Doving KB, Trotier D. 1998. Structure and function of the vomeronasal organ. Journal of Experimental Biologyl, 201: 2913−2925.
    Dulac C, Torello AT. 2003. Molecular detection of pheromone signals in mammals: from genes to behaviour. Nature Reviews Neuroscience, 4: 551−562. doi: 10.1038/nrn1140
    Dulac C, Wagner S. 2006. Genetic analysis of brain circuits underlying pheromone signaling. Annual Review of Genetics, 40: 449−467. doi: 10.1146/annurev.genet.39.073003.093937
    Ghosh S, Larson SD, Hefzi H, Marnoy Z, Cutforth T, Dokka K, Baldwin KK. 2011. Sensory maps in the olfactory cortex defined by long-range viral tracing of single neurons. Nature, 472: 217−220. doi: 10.1038/nature09945
    Halpern M, Martinez-Marcos A. 2003. Structure and function of the vomeronasal system: an update. Progress in Neurobiology, 70(3): 245−318. doi: 10.1016/S0301-0082(03)00103-5
    Holy TE. 2018. The accessory olfactory system: Innately specialized or microcosm of mammalian circuitry?. Annual review of neuroscience, 41: 501−525. doi: 10.1146/annurev-neuro-080317-061916
    Kang N, Baum MJ, Cherry JA. 2009. A direct main olfactory bulb projection to the 'vomeronasal' amygdala in female mice selectively responds to volatile pheromones from males. The European Journal of Neuroscience, 29(3): 624−634. doi: 10.1111/j.1460-9568.2009.06638.x
    Krieger J, Schmitt A, Lobel D, Gudermann T, Schultz G, Breer H, Boekhoff I. 1999. Selective activation of G protein subtypes in the vomeronasal organ upon stimulation with urine-derived compounds. The Journal of Biological Chemistry, 274(8): 4655−4662. doi: 10.1074/jbc.274.8.4655
    Larriva-Sahd J. 2008. The accessory olfactory bulb in the adult rat: a cytological study of its cell types, neuropil, neuronal modules, and interactions with the main olfactory system. The Journal of Comparative Neurology, 510(3): 309−350. doi: 10.1002/cne.21790
    Leinders-Zufall T, Brennan P, Widmayer P, S PC, Maul-Pavicic A, Jager M, Li XH, Breer H, Zufall F, Boehm T. 2004. MHC class I peptides as chemosensory signals in the vomeronasal organ. Science, 306(5698): 1033−1037. doi: 10.1126/science.1102818
    Leinders-Zufall T, Lane AP, Puche AC, Ma W, Novotny MV, Shipley MT, Zufall F. 2000. Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature, 405: 792−796. doi: 10.1038/35015572
    Marking S, Krosnowski K, Ogura T, Lin W. 2017. Dichotomous distribution of putative cholinergic interneurons in mouse accessory olfactory bulb. Frontiers in Neuroanatomy, 11: 10.
    Miyamichi K, Amat F, Moussavi F, Wang C, Wickersham I, Wall NR, Taniguchi H, Tasic B, Huang ZJ, He Z, Callaway EM, Horowitz MA, Luo L. 2011. Cortical representations of olfactory input by trans-synaptic tracing. Nature, 472: 191−196. doi: 10.1038/nature09714
    Mohedano-Moriano A, Pro-Sistiaga P, Ubeda-Banon I, Crespo C, Insausti R, Martinez-Marcos A. 2007. Segregated pathways to the vomeronasal amygdala: differential projections from the anterior and posterior divisions of the accessory olfactory bulb. The European Journal of Neuroscience, 25(7): 2065−2080. doi: 10.1111/j.1460-9568.2007.05472.x
    Mohrhardt J, Nagel M, Fleck D, Ben-Shaul Y, Spehr M. 2018. Signal detection and coding in the accessory olfactory system. Chemical Senses, 43(9): 667−695. doi: 10.1093/chemse/bjy061
    Moriya-Ito K, Endoh K, Fujiwara-Tsukamoto Y, Ichikawa M. 2013. Three-dimensional reconstruction of electron micrographs reveals intrabulbar circuit differences between accessory and main olfactory bulbs. Frontiers in Neuroanatomy, 7: 5.
    Nagayama S, Enerva A, Fletcher ML, Masurkar AV, Igarashi KM, Mori K, Chen WR. 2010. Differential axonal projection of mitral and tufted cells in the mouse main olfactory system. Frontiers in Neural Circuits, 4: 120.
    Perez-Gomez A, Bleymehl K, Stein B, Pyrski M, Birnbaumer L, Munger SD, Leinders-Zufall T, Zufall F, Chamero P. 2015. Innate predator odor aversion driven by parallel olfactory subsystems that converge in the ventromedial hypothalamus. Current Biology, 25(10): 1340−1346. doi: 10.1016/j.cub.2015.03.026
    Riviere S, Challet L, Fluegge D, Spehr M, Rodriguez I. 2009. Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature, 459: 574−577. doi: 10.1038/nature08029
    Sosulski DL, Bloom ML, Cutforth T, Axel R, Datta SR. 2011. Distinct representations of olfactory information in different cortical centres. Nature, 472: 213−216. doi: 10.1038/nature09868
    Spehr M, Spehr J, Ukhanov K, Kelliher KR, Leinders-Zufall T, Zufall F. 2006. Parallel processing of social signals by the mammalian main and accessory olfactory systems. Cellular Molecular Life Sciences, 63: 1476−1484. doi: 10.1007/s00018-006-6109-4
    Su CY, Menuz K, Carlson JR. 2009. Olfactory perception: receptors, cells, and circuits. Cell, 139: 45−59. doi: 10.1016/j.cell.2009.09.015
    Takami S, Graziadei PP. 1991. Light microscopic Golgi study of mitral/tufted cells in the accessory olfactory bulb of the adult rat. The Journal of Comparative Neurology, 311(1): 65−83. doi: 10.1002/cne.903110106
    Urban NN, Castro JB. 2005. Tuft calcium spikes in accessory olfactory bulb mitral cells. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 25(20): 5024−5028. doi: 10.1523/JNEUROSCI.0297-05.2005
    Vargas-Barroso V, Ordaz-Sanchez B, Pena-Ortega F, Larriva-Sahd JA. 2015. Electrophysiological evidence for a direct link between the main and accessory olfactory bulbs in the adult rat. Frontiers in Neuroscience, 9: 518.
    von Campenhausen H, Mori K. 2000. Convergence of segregated pheromonal pathways from the accessory olfactory bulb to the cortex in the mouse. The European Journal of Neuroscience, 12(1): 33−46. doi: 10.1046/j.1460-9568.2000.00879.x
    Yokosuka M. 2012. Histological properties of the glomerular layer in the mouse accessory olfactory bulb. Experimental Animals, 61(1): 13−24. doi: 10.1538/expanim.61.13
    Yoles-Frenkel M, Kahan A, Ben-Shaul Y. 2018. Temporal response properties of accessory olfactory bulb neurons: limitations and opportunities for decoding. The Journal of Neuroscience, 38(21): 4957−4976. doi: 10.1523/JNEUROSCI.2091-17.2018
    Yonekura J, Yokoi M. 2008. Conditional genetic labeling of mitral cells of the mouse accessory olfactory bulb to visualize the organization of their apical dendritic tufts. Molecular and Cellular Neuroscience, 37(4): 708−718. doi: 10.1016/j.mcn.2007.12.016
    Zhu X, Lin K, Liu Q, Yue X, Mi H, Huang X, He X, Wu R, Zheng D, Wei D, Jia L, Wang W, Manyande A, Wand J, Zhang Z, Xu F. 2020. Rabies virus pseudotyped with CVS-N2C glycoprotein as a powerful tool for retrograde neuronal network tracing. Neuroscience Bulletin, 36(3): 202−216. doi: 10.1007/s12264-019-00423-3
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (1972) PDF downloads(155) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint