Volume 41 Issue 2
Mar.  2020
Turn off MathJax
Article Contents
Huan-Zhi Chen, Hong-Yi Yang, Kai Zhong, Jia-Li Li. Preliminary study on fine structures of subcortical nuclei in rhesus monkeys by ex vivo 9.4 T MRI. Zoological Research, 2020, 41(2): 199-202. doi: 10.24272/j.issn.2095-8137.2020.013
Citation: Huan-Zhi Chen, Hong-Yi Yang, Kai Zhong, Jia-Li Li. Preliminary study on fine structures of subcortical nuclei in rhesus monkeys by ex vivo 9.4 T MRI. Zoological Research, 2020, 41(2): 199-202. doi: 10.24272/j.issn.2095-8137.2020.013

Preliminary study on fine structures of subcortical nuclei in rhesus monkeys by ex vivo 9.4 T MRI

doi: 10.24272/j.issn.2095-8137.2020.013
Funds:  This work was supported by the Chinese Academy of Sciences (Y406541141 and 1100050210), National Natural Science Foundation of China (91649119), and Ministry of Science and Technology of China (2015CB755605 and 2016YFC1305902) to J.L.L., National Natural Science Foundation of China (91649101), National Key Research and Development Program of China (2016 YFC1300500-503), Hefei Science Center (2017HSC-KPRD003), and Hefei Institutes of Physical Science (YZJJ201702) to K.Z.
More Information
  • loading
  • [1]
    Huang Y, Coupland NJ, Lebel RM, Carter R, Seres P, Wilman AH, Malykhin NV. 2013. Structural changes in hippocampal subfields in major depressive disorder: a high-field magnetic resonance imaging study. Biological Psychiatry, 74(1): 62−68. doi: 10.1016/j.biopsych.2013.01.005
    [2]
    Janak PH, Tye KM. 2015. From circuits to behaviour in the amygdala. Nature, 517(7534): 284−292. doi: 10.1038/nature14188
    [3]
    Knickmeyer RC, Styner M, Short SJ, Lubach GR, Kang C, Hamer R, Coe CL, Gilmore JH. 2010. Maturational trajectories of cortical brain development through the pubertal transition: unique species and sex differences in the monkey revealed through structural magnetic resonance imaging. Cerebral Cortex, 20(5): 1053−1063. doi: 10.1093/cercor/bhp166
    [4]
    Kwan BYM, Salehi F, Kope R, Lee DH, Sharma M, Hammond R, Burneo JG, Steven D, Peters T, Khan AR. 2017. Evaluation of ex-vivo 9.4 T MRI in post-surgical specimens from temporal lobe epilepsy patients. Journal of Neuroradiology, 44(6): 377−380. doi: 10.1016/j.neurad.2017.05.007
    [5]
    Pikkarainen M, Ronkko S, Savander V, Insausti R, Pitkanen A. 1999. Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the hippocampal formation in rat. The Journal of Comparative Neurology, 403(2): 229−260. doi: 10.1002/(SICI)1096-9861(19990111)403:2<229::AID-CNE7>3.0.CO;2-P
    [6]
    Pitkanen A, Amaral DG. 1998. Organization of the intrinsic connections of the monkey amygdaloid complex: projections originating in the lateral nucleus. The Journal of Comparative Neurology, 398(3): 431−458. doi: 10.1002/(SICI)1096-9861(19980831)398:3<431::AID-CNE9>3.0.CO;2-0
    [7]
    Sah P, Faber ES, Lopez De Armentia M, Power J. 2003. The amygdaloid complex: anatomy and physiology. Physiological Reviews, 83(3): 803−834. doi: 10.1152/physrev.00002.2003
    [8]
    Saleem KS, Logothetis NK. 2012. A Combined MRI and Histology Atlas of the Rhesus Monkey Brain in STereotaxic Coordinates. Amsterdam Boston: Academic Press.
    [9]
    Saunders RC, Rosene DL, Van Hoesen GW. 1988. Comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey: II. Reciprocal and non-reciprocal connections. The Journal of Comparative Neurology, 271(2): 185−207. doi: 10.1002/cne.902710203
    [10]
    Sharp BM. 2017. Basolateral amygdala and stress-induced hyperexcitability affect motivated behaviors and addiction. Translational Psychiatry, 7(8): e1194. doi: 10.1038/tp.2017.161
    [11]
    Shaw P, Kabani NJ, Lerch JP, Eckstrand K, Lenroot R, Gogtay N, Greenstein D, Clasen L, Evans A, Rapoport JL, Giedd JN, Wise SP. 2008. Neurodevelopmental trajectories of the human cerebral cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28(14): 3586−3594. doi: 10.1523/JNEUROSCI.5309-07.2008
    [12]
    Sowell ER, Thompson PM, Peterson BS, Mattson SN, Welcome SE, Henkenius AL, Riley EP, Jernigan TL, Toga AW. 2002a. Mapping cortical gray matter asymmetry patterns in adolescents with heavy prenatal alcohol exposure. NeuroImage, 17(4): 1807−1819. doi: 10.1006/nimg.2002.1328
    [13]
    Sowell ER, Thompson PM, Rex D, Kornsand D, Tessner KD, Jernigan TL, Toga AW. 2002b. Mapping sulcal pattern asymmetry and local cortical surface gray matter distribution in vivo: maturation in perisylvian cortices. Cerebral Cortex, 12(1): 17−26. doi: 10.1093/cercor/12.1.17
    [14]
    Yang Y, Wang JZ. 2017. From structure to behavior in basolateral amygdala-hippocampus circuits. Frontiers in Neural Circuits, 11: 86. doi: 10.3389/fncir.2017.00086
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(1)

    Article Metrics

    Article views (1279) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return