Volume 41 Issue 1
Jan.  2020
Turn off MathJax
Article Contents
Feng Xu, Ming-Yun Li, Jiong Chen. D-dopachrome tautomerase from Japanese sea bass (Lateolabrax japonicus) is a chemokine-like cytokine and functional homolog of macrophage migration inhibitory factor. Zoological Research, 2020, 41(1): 39-50. doi: 10.24272/j.issn.2095-8137.2020.003
Citation: Feng Xu, Ming-Yun Li, Jiong Chen. D-dopachrome tautomerase from Japanese sea bass (Lateolabrax japonicus) is a chemokine-like cytokine and functional homolog of macrophage migration inhibitory factor. Zoological Research, 2020, 41(1): 39-50. doi: 10.24272/j.issn.2095-8137.2020.003

D-dopachrome tautomerase from Japanese sea bass (Lateolabrax japonicus) is a chemokine-like cytokine and functional homolog of macrophage migration inhibitory factor

doi: 10.24272/j.issn.2095-8137.2020.003
Funds:  This project was supported by the National Natural Science Foundation of China (31772876), Zhejiang Provincial Natural Science Foundation of China (LZ18C190001), Scientific Innovation Team Project of Ningbo (2015C110018), and K.C. Wong Magna Fund in Ningbo University
More Information
  • Corresponding author: E-mail: jchen1975@163.com; chenjiong@nbu.edu.cn
  • Received Date: 2019-09-11
  • Publish Date: 2020-01-01
  • D-dopachrome tautomerase (DDT), a member of the macrophage migration inhibitory factor (MIF) protein superfamily, is a newly described cytokine with chemokine-like characteristics. However, research on fish DDT remains limited. In this study, we identified a DDT homolog (LjDDT) from the Japanese sea bass, Lateolabrax japonicus. Sequence analysis showed that LjDDT had typical sequence features of known DDT and MIF homologs and was most closely related to DDT of rock bream (Oplegnathus fasciatus). LjDDT transcripts were detected in all tested tissues of healthy Japanese sea bass, with the highest expression found in the liver. Upon infection with Vibrio harveyi, LjDDT transcripts were significantly down-regulated in the three tested tissues, including the liver, spleen, and head kidney. Recombinant LjDDT (rLjDDT) and the corresponding antibody (anti-rLjDDT) were subsequently prepared. The administration of 100 μg/g anti-rLjDDT had a statistically significant protective effect on the survival of V. harveyi-infected fish. Moreover, rLjDDT was able to induce the migration of monocytes/macrophages (MO/MФ) and lymphocytes both in vitro and in vivo, but without significant influence on the migration of neutrophils. rLjDDT exhibited chemotactic activity for lipopolysaccharide (LPS) -stimulated M1-type MO/ MΦ in vitro, but not for cAMP-stimulated M2-type MO/MΦ. Furthermore, the knockdown of LjCD74, but not LjCXCR4, significantly down-regulated the rLjDDT-enhanced migration of MO/MΦ and relieved the rLjMIF-inhibited migration of MO/MΦ. These results indicate that LjCD74 may be the major chemotactic receptor of LjDDT and LjMIF in Japanese sea bass MO/MΦ. Combined rLjDDT+ rLjMIF treatment had no significant effect on the migration of MsiRNA, LjCD74si-, or LjCXCR4sitreated MO/MΦ compared to the control group, suggesting that the roles of LjDDT and LjMIF may be antagonistic. In conclusion, our study demonstrates for the first time that DDT may play a role in the immune responses of fish against bacterial infection through chemotactic recruitment of MO/MΦ via mediation of CD74 as an antagonist of MIF.

  • loading
  • [1]
    Abe R, Peng T, Sailors J, Bucala R, Metz CN. 2001. Regulation of the CTL response by macrophage migration inhibitory factor. The Journal of Immunology, 166(2): 747−753. doi:  10.4049/jimmunol.166.2.747
    [2]
    Benedek G, Meza-Romero R, Jordan K, Zhang Y, Nguyen H, Kent G, Li J, Siu E, Frazer J, Piecychna M, Du X, Sreih A, Leng L, Wiedrick J, Caillier SJ, Offner H, Oksenberg JR, Yadav V, Bourdette D, Bucala R, Vandenbark AA. 2017. MIF and D-DT are potential disease severity modifiers in male MS subjects. Proceedings of the National Academy of Sciences of the United States of America, 114(40): E8421−E8429. doi:  10.1073/pnas.1712288114
    [3]
    Bernhagen J, Krohn R, Lue H, Gregory JL, Zernecke A, Koenen RR, Dewor M, Georgiev I, Schober A, Leng L, Kooistra T, Fingerle-Rowson G, Ghezzi P, Kleemann R, McColl SR, Bucala R, Hickey MJ, Weber C. 2007. MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nature Medicine, 13(5): 587−596. doi:  10.1038/nm1567
    [4]
    Bloom BR, Bennett B. 1966. Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science, 153(3731): 80−82. doi:  10.1126/science.153.3731.80
    [5]
    Chen F, Lu XJ, Nie L, Ning YJ, Chen J. 2018. Molecular characterization of a CC motif chemokine 19-like gene in ayu (Plecoglossus altivelis) and its role in leukocyte trafficking. Fish and Shellfish Immunology, 72: 301−308. doi:  10.1016/j.fsi.2017.11.012
    [6]
    Chen J, Chen Q, Lu XJ, Li CH. 2014. LECT2 improves the outcomes in ayu with Vibrio anguillarum infection via monocytes/macrophages. Fish and Shellfish Immunology, 41(2): 586−592. doi:  10.1016/j.fsi.2014.10.012
    [7]
    Chen K, Shi YH, Chen J, Li MY. 2019. A soluble FcγR homolog inhibits IgM antibody production in ayu spleen cells. Zoological Research, 2019, 40(5): 404−415.
    [8]
    Coleman AM, Rendon BE, Zhao M, Qian MW, Bucala R, Xin D, Mitchell RA. 2008. Cooperative regulation of non-small cell lung carcinoma angiogenic potential by macrophage migration inhibitory factor and its homolog, D-dopachrome tautomerase. The Journal of Immunology, 181(4): 2330−2337. doi:  10.4049/jimmunol.181.4.2330
    [9]
    David JR. 1966. Delayed hypersensitivity in vitro: its mediation by cell-free substances formed by lymphoid cell-antigen interaction. Proceedings of the National Academy of Sciences of the United States of America, 56(1): 72−77. doi:  10.1073/pnas.56.1.72
    [10]
    Esumi N, Budarf M, Ciccarelli L, Sellinger B, Kozak CA, Wistow G. 1998. Conserved gene structure and genomic linkage for D-dopachrome tautomerase (DDT) and MIF. Mammalian Genome, 9(9): 753−757. doi:  10.1007/s003359900858
    [11]
    Fagone P, Mazzon E, Cavalli E, Bramanti A, Petralia MC, Mangano K, Al-Abed Y, Bramati P, Nicoletti F. 2018. Contribution of the macrophage migration inhibitory factor superfamily of cytokines in the pathogenesis of preclinical and human multiple sclerosis: in silico and in vivo evidences. Journal of Neuroimmunology, 322: 46−56. doi:  10.1016/j.jneuroim.2018.06.009
    [12]
    Fernández J, Acevedo J, Wiest R, Gustot T, Amoros A, Deulofeu C, Reverter E, Martínez J, Saliba F, Jalan R, Welzel T, Pavesi M, Hernández-Tejero M, Ginès P, Arroyo V. 2018. Bacterial and fungal infections in acute-on-chronic liver failure: prevalence, characteristics and impact on prognosis. Gut, 67(10): 1870−1880. doi:  10.1136/gutjnl-2017-314240
    [13]
    Furukawa R, Tamaki K, Kaneko H. 2016. Two macrophage migration inhibitory factors regulate starfish larval immune cell chemotaxis. Immunology and Cell Biology, 94(4): 315−321. doi:  10.1038/icb.2016.6
    [14]
    Günther S, Fagone P, Jalce G, Atanasov AG, Guignabert C, Nicoletti F. 2019. Role of MIF and D-DT in immune-inflammatory, autoimmune, and chronic respiratory diseases: from pathogenic factors to therapeutic targets. Drug Discovery Today, 24(2): 428−439. doi:  10.1016/j.drudis.2018.11.003
    [15]
    Guo D, Guo J, Yao J, Jiang K, Hu J, Wang B, Liu H, Sun W, Jiang X. 2016. D-dopachrome tautomerase is over-expressed in pancreatic ductal adenocarcinoma and acts cooperatively with macrophage migration inhibitory factor to promote cancer growth. International Journal of Cancer, 139(9): 2056−2067. doi:  10.1002/ijc.30278
    [16]
    Jankauskas SS, Wong DWL, Bucala R, Djudjaj S, Boor P. 2019. Evolving complexity of MIF signaling. Cellular Signalling, 57: 76−88. doi:  10.1016/j.cellsig.2019.01.006
    [17]
    Jin HJ, Xiang LX, Shao JZ. 2007. Molecular cloning and identification of macrophage migration inhibitory factor (MIF) in teleost fish. Developmental and Comparative Immunology, 31(11): 1131−1144. doi:  10.1016/j.dci.2007.02.004
    [18]
    Joerink M, Ribeiro CMS, Stet RJM, Hermsen T, Savelkoul HFJ, Wiegertjes GF. 2006. Head kidney-derived macrophages of common carp (Cyprinus carpio L. ) show plasticity and functional polarization upon differential stimulation. The Journal of Immunology, 177(1): 61−69.
    [19]
    Kim BS, Stoppe C, Grieb G, Leng L, Sauler M, Assis D, Simons D, Boecker AH, Schulte W, Piecychna M, Hager S, Bernhagen J, Pallua N, Bucala R. 2016. The clinical significance of the MIF homolog d-dopachrome tautomerase (MIF-2) and its circulating receptor (sCD74) in burn. Burns, 42(6): 1265−1276. doi:  10.1016/j.burns.2016.02.005
    [20]
    Kim BS, Tilstam PV, Hwang SS, Simons D, Schulte W, Leng L, Sauler M, Ganse B, Averdunk L, Kopp R, Stoppe C, Bernhagen J, Pallua N, Bucala R. 2017. D-dopachrome tautomerase in adipose tissue inflammation and wound repair. Journal of Cellular and Molecular Medicine, 21(1): 35−45. doi:  10.1111/jcmm.12936
    [21]
    Klasen C, Ohl K, Sternkopf M, Shachar I, Schmitz C, Heussen N, Hobeika E, Levit-Zerdoun E, Tenbrock K, Reth M, Bernhagen J, El Bounkari O. 2014. MIF promotes B cell chemotaxis through the receptors CXCR4 and CD74 and ZAP-70 signaling. The Journal of Immunology, 192(11): 5273−5284. doi:  10.4049/jimmunol.1302209
    [22]
    Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version7.0 for bigger datasets. Molecular Biology and Evolution, 33(7): 1870−1874. doi:  10.1093/molbev/msw054
    [23]
    Leng L, Bucala R. 2006. Insight into the biology of macrophage migration inhibitory factor (MIF) revealed by the cloning of its cell surface receptor. Cell Research, 16(2): 162−168. doi:  10.1038/sj.cr.7310022
    [24]
    Liu H, Lu XJ, Chen J. 2018. Full-length and a smaller globular fragment of adiponectin have opposite roles in regulating monocyte/macrophage functions in ayu, Plecoglossus altivelis. Fish and Shellfish Immunology, 82: 319−329. doi:  10.1016/j.fsi.2018.08.041
    [25]
    Lu XJ, Chen J. 2019. Specific function and modulation of teleost monocytes/ macrophages: polarization and phagocytosis. Zoological Research, 40(3): 146−150. doi:  10.24272/j.issn.2095-8137.2019.035
    [26]
    Luster AD, Alon R, von Andrian UH. 2005. Immune cell migration in inflammation: present and future therapeutic targets. Nature Immunology, 6(12): 1182−1190. doi:  10.1038/ni1275
    [27]
    Ma Y, Su KN, Pfau D, Rao VS, Wu X, Hu X, Leng L, Du X, Piecychna M, Bedi K, Campbell SG, Eichmann A, Testani JM, Margulies KB, Bucala R, Young LH. 2019. Cardiomyocyte d-dopachrome tautomerase protects against heart failure. The Journal of Clinical Investigation Insight, 4(17): 128900.
    [28]
    Merk M, Baugh J, Zierow S, Leng L, Pal U, Lee SJ, Ebert AD, Mizue Y, Trent JO, Mitchell R, Nickel W, Kavathas PB, Bernhagen J, Bucala R. 2009. The golgi-associated protein p115 mediates the secretion of macrophage migration inhibitory factor. The Journal of Immunology, 182(11): 6896−6906. doi:  10.4049/jimmunol.0803710
    [29]
    Merk M, Mitchell RA, Endres S, Bucala R. 2012. D-dopachrome tautomerase (D-DT or MIF-2): doubling the MIF cytokine family. Cytokine, 59(1): 10−17. doi:  10.1016/j.cyto.2012.03.014
    [30]
    Merk M, Zierow S, Leng L, Das R, Du X, Schulte W, Fan J, Lue H, Chen Y, Xiong H, Chagnon F, Bernhagen J, Lolis E, Mor G, Lesur O, Bucala R. 2011. The D-dopachrome tautomerase (DDT) gene product is a cytokine and functional homolog of macrophage migration inhibitory factor (MIF). Proceedings of the National Academy of Sciences of the United States of America, 108(34): E577−E585. doi:  10.1073/pnas.1102941108
    [31]
    Nishihira J, Fujinaga M, Kuriyama T, Suzuki M, Sugimoto H, Nakagawa A, Tanaka I, Sakai M. 1998. Molecular cloning of human D-dopachrome tautomerase cDNA: N-terminal proline is essential for enzyme activation. Biochemical and Biophysical Research Communications, 243(2): 538−544. doi:  10.1006/bbrc.1998.8123
    [32]
    Odh G, Hindemith A, Rosengren AM, Rosengren E, Rorsman H. 1993. Isolation of a new tautomerase monitored by the conversion of D-dopachrome to 5,6-dihydroxyindole. Biochemical and Biophysical Research Communications, 197(2): 619−624. doi:  10.1006/bbrc.1993.2524
    [33]
    Oh M, Kasthuri SR, Wan Q, Bathige SDNK, Whang I, Lim BS, Jung HB, Oh MJ, Jung SJ, Kim SY, Lee J. 2013. Characterization of MIF family proteins: MIF and DDT from rock bream, Oplegnathus fasciatus. Fish and Shellfish Immunology, 35(2): 458−468. doi:  10.1016/j.fsi.2013.05.003
    [34]
    Pasupuleti V, Du W, Gupta Y, Yeh IJ, Montano M, Magi-Galuzzi C, Welford SM. 2014. Dysregulated D-dopachrome tautomerase, a hypoxia-inducible factor-dependent gene, cooperates with macrophage migration inhibitory factor in renal tumorigenesis. Journal of Biological Chemistry, 289(6): 3713−3723. doi:  10.1074/jbc.M113.500694
    [35]
    Pawig L, Klasen C, Weber C, Bernhagen J, Noels H. 2015. Diversity and inter-connections in the CXCR4 chemokine receptor/ligand family: molecular perspectives. Frontiers in Immunology, 6: 429.
    [36]
    Pohl J, Hendgen-Cotta UB, Stock P, Luedike P, Rassaf T. 2017. Elevated MIF-2 levels predict mortality in critically ill patients. Journal of Critical Care, 40: 52−57. doi:  10.1016/j.jcrc.2017.03.012
    [37]
    Presti M, Mazzon E, Basile MS, Petralia MC, Bramanti A, Colletti G, Bramanti P, Nicoletti F, Fagone P. 2018. Overexpression of macrophage migration inhibitory factor and functionally-related genes, D-DT, CD74, CD44, CXCR2 and CXCR4, in glioblastoma. Oncology Letters, 16(3): 2881−2886.
    [38]
    Rajasekaran D, Gröning S, Schmitz C, Zierow S, Drucker N, Bakou M, Kohl K, Mertens A, Lue H, Weber C, Xiao A, Luker G, Kapurniotu A, Lolis E, Bernhagen J. 2016. Macrophage migration inhibitory factor-CXCR4 receptor interactions: evidence for partial allosteric agonism in comparison with CXCL12 chemokine. Journal of Biological Chemistry, 291(30): 15881−15895. doi:  10.1074/jbc.M116.717751
    [39]
    Ren Y, Liu SF, Nie L, Cai SY, Chen J. 2019. Involvement of ayu NOD2 in NF-κB and MAPK signaling pathways: insights into functional conservation of NOD2 in antibacterial innate immunity. Zoological Research, 40(2): 77−88. doi:  10.24272/j.issn.2095-8137.2018.066
    [40]
    Rijvers L, Melief MJ, van der Vuurst de Vries RM, Stéphant M, van Langelaar J, Wierenga-Wolf AF, Hogervorst JM, Geurts-Moespot AJ, Sweep FCGJ, Hintzen RQ, van Luijn MM. 2018. The macrophage migration inhibitory factor pathway in human B cells is tightly controlled and dysregulated in multiple sclerosis. European Journal of Immunology, 48(11): 1861−1871. doi:  10.1002/eji.201847623
    [41]
    Schober A, Bernhagen J, Weber C. 2008. Chemokine-like functions of MIF in atherosclerosis. Journal of Molecular Medicine, 86(7): 761−770. doi:  10.1007/s00109-008-0334-2
    [42]
    Schwartz V, Lue H, Kraemer S, Korbiel J, Krohn R, Ohl K, Bucala R, Weber C, Bernhagen J. 2009. A functional heteromeric MIF receptor formed by CD74 and CXCR4. FEBS Letters, 583(17): 2749−2757. doi:  10.1016/j.febslet.2009.07.058
    [43]
    Shen YC, Thompson DL, Kuah MK, Wong KL, Wu KL, Linn SA, Jewett EM, Shu-Chien AC, Barald KF. 2012. The cytokine macrophage migration inhibitory factor (MIF) acts as a neurotrophin in the developing inner ear of the zebrafish, Danio rerio. Developmental Biology, 363(1): 84−94. doi:  10.1016/j.ydbio.2011.12.023
    [44]
    Sinitski D, Kontos C, Krammer C, Asare Y, Kapurniotu A, Bernhagen J. 2019. Macrophage migration inhibitory factor (MIF)-based therapeutic concepts in atherosclerosis and inflammation. Journal of Thrombosis and Haemostasis, 119(4): 553−566. doi:  10.1055/s-0039-1677803
    [45]
    Soppert J, Kraemer S, Beckers C, Averdunk L, Möllmann J, Denecke B, Goetzenich A, Marx G, Bernhagen J, Stoppe C. 2018. Soluble CD74 reroutes MIF/CXCR4/AKT-mediated survival of cardiac myofibroblasts to necroptosis. Journal of the American Heart Association, 7(17): e009384.
    [46]
    Sugimoto H, Taniguchi M, Nakagawa A, Tanaka I, Suzuki M, Nishihira J. 1999. Crystal structure of human D-dopachrome tautomerase, a homologue of macrophage migration inhibitory factor, at1.54 Å resolution. Biochemistry, 38(11): 3268−3279. doi:  10.1021/bi982184o
    [47]
    Tilstam PV, Qi D, Leng L, Young L, Bucala R. 2017. MIF family cytokines in cardiovascular diseases and prospects for precision-based therapeutics. Expert Opinion on Therapeutic Targets, 21(7): 671−683. doi:  10.1080/14728222.2017.1336227
    [48]
    Valiño-Rivas L, Cuarental L, Grana O, Bucala R, Leng L, Sanz A, Gomez G, Ortiz A, Sanchez-Niño MD. 2018. TWEAK increases CD74 expression and sensitizes to DDT proinflammatory actions in tubular cells. PLoS One, 13(6): e0199391. doi:  10.1371/journal.pone.0199391
    [49]
    Vincent FB, Lin E, Sahhar J, Ngian GS, Kandane-Rathnayake R, Mende R, Hoi AY, Morand EF, Lang T, Harris J. 2018. Analysis of serum macrophage migration inhibitory factor and D-dopachrome tautomerase in systemic sclerosis. Clinical & Translational Immunology, 7(12): e1042.
    [50]
    Wang LX, Zhang SX, Wu HJ, Rong XL, Guo J. 2019. M2b macrophage polarization and its roles in diseases. Journal of Leukocyte Biology, 106(2): 345−358. doi:  10.1002/JLB.3RU1018-378RR
    [51]
    Wang Q, Wei Y, Zhang J. 2017. Combined knockdown of D-dopachrome tautomerase and migration inhibitory factor inhibits the proliferation, migration, and invasion in human cervical cancer. International Journal of Gynecological Cancer, 27(4): 634−642. doi:  10.1097/IGC.0000000000000951
    [52]
    Weber C, Kraemer S, Drechsler M, Lue H, Koenen RR, Kapurniotu A, Zernecke A, Bernhagen J. 2008. Structural determinants of MIF functions in CXCR2-mediated inflammatory and atherogenic leukocyte recruitment. Proceedings of the National Academy of Sciences of the United States of America, 105(42): 16278−16283. doi:  10.1073/pnas.0804017105
    [53]
    Xu F, Shi YH, Chen J. 2019. Characterization and immunologic functions of the macrophage migration inhibitory factor from Japanese sea bass, Lateolabrax japonicus. Fish and Shellfish Immunology, 86: 947−955. doi:  10.1016/j.fsi.2018.12.042
    [54]
    Yu L, Li CH, Chen J. 2019. A novel CC chemokine ligand 2 like gene from ayu Plecoglossus altivelis is involved in the innate immune response against to Vibrio anguillarum. Fish and Shellfish Immunology, 87: 886−896. doi:  10.1016/j.fsi.2019.02.019
    [55]
    Zhang M, Åman P, Grubb A, Panagopoulos I, Hindemith A, Rosengren E, Rorsman H. 1995. Cloning and sequencing of a cDNA encoding rat D-dopachrome tautomerase. FEBS Letters, 373(3): 203−206. doi:  10.1016/0014-5793(95)01041-C
    [56]
    Zhou QJ, Wang L, Chen J, Wang RN, Shi YH, Li CH, Zhang DM, Yan XJ, Zhang YJ. 2014. Development and evaluation of a real-time fluorogenic loop-mediated isothermal amplification assay integrated on a microfluidic disc chip (on-chip LAMP) for rapid and simultaneous detection of ten pathogenic bacteria in aquatic animals. Journal of Microbiological Methods, 104: 26−35. doi:  10.1016/j.mimet.2014.06.008
  • Relative Articles

    [1] Chang-Hong Li, Jie Chen, Li Nie, Jiong Chen. MOSPD2 is a receptor mediating the LEAP-2 effect on monocytes/macrophages in a teleost, Boleophthalmus pectinirostris. Zoological Research, 2020, 41(): 1-12.  doi: 10.24272/j.issn.2095-8137.2020.211
    [2] Jun-Zhen LI, Lin WANG, Rui-Chun TIAN, Shi-Yang LI. Number, migration, breeding and conservation management of Black-necked Cranes (Grus nigricollis) at Gahai, Gansu, China. Zoological Research, 2014, 35(S1): 211-214.  doi: 10.11813/j.issn.2095-8137.2014.s1.0211
    [3] De-Jun KONG, Xing-Yao ZHONG, Jun-Xing YANG, Xiao-Jun YANG. Seasonal and daily migration behavior of Black-necked Cranes (Grus nigricollis) in Yunnan, China: timing and volume. Zoological Research, 2014, 35(S1): 181-188.  doi: 10.13918/j.issn.2095-8137.2014.s1.0181
    [4] De-Jun KONG, Feng-Shan LI, Xiao-Jun YANG. Using bird banding and recovery to study the migration of Black-necked Cranes (Grus nigricollis) in China. Zoological Research, 2014, 35(S1): 20-38.  doi: 10.13918/j.issn.2095-8137.2014.s1.0020
    [5] Wei-Yao KONG, Zhen-He ZHENG, Jin-Cai WU, Yu NING, Yong WANG, Xiao-Dong HAN. Foraging habitat selection of Siberian Crane (Grus leucogeranus) during autumn migration period in the Momoge Nature Reserve. Zoological Research, 2013, 34(3): 166-173.  doi: 10.11813/j.issn.0254-5853.2013.3.0166
    [6] SHI Yu-Hong, CHEN Jiong, GAO Shan-Shan, SHEN Guang-Qiang, LU Xin-Jiang, LI Ming-Yun. Cloning, physical and chemical property analysis of the Japanese sea bass Wap65-2 gene and its expression following Vibrio harveyi infection. Zoological Research, 2012, 33(5): 481-486.  doi: 10.3724/SP.J.1141.2012.05481
    [7] ZHUANG Yong-Hui, LI Si-Man, YU Guo-Yu, ZHANG Yong, XIANG Yang, ZOU Hao, LEE Wen-Hui. Bacterial expression and purification of biologically active human TFF2. Zoological Research, 2012, (2): 144-150.  doi: 10.3724/SP.J.1141.2012.02144
    [8] GUO Hong-Yi, ZHENG Yi, TANG Wen-Qiao, SHEN Hao, WEI Kai, XIE Zheng-Li, Katsumi Ts. Behavioral migration diversity of the Yangtze River Japanese Eel, Anguilla japonica, based on otolith Sr/Ca ratios. Zoological Research, 2011, 32(4): 442-450.  doi: 10.3724/SP.J.1141.2011.04442
    [9] yu guo-Yu, XIANG Yang, ZHANG Hong-Yun, JIANG Ping, Lee Wen-Hui, ZHANG Yun, ZHANG. Expression of Bm-TFF2 mutants in Escherichia coli andtheir cell migration-promoting activity. Zoological Research, 2011, 32(4): 379-385.  doi: 10.3724/SP.J.1141.2011.04379
    [10] SHI Yu, ZHAO Shu-hua, MAO Bing-yu. Physical Blocking Neural Tube Closure Affects Radial Intercalation and Neural Crest Midline-directed Migration in Xenopus Dorsal Explants. Zoological Research, 2009, 30(6): 639-644.  doi: 10.3724/SP.J.1141.2009.06639
    [11] HAN Lian-xian, *, HUANG Shi-lin, YUAN Yu-chuan, QIU Yun-long. Fall Migration Dynamics of Birds on Fenghuang Mountain, Yunnan Province, China. Zoological Research, 2007, 28(1): 35-40.
    [12] YANG Jun-xing *, CHEN Xiao-yong, CHEN Ying-rui. On the Population Status and Migration of Pangasiid Catfishes in Lancangjiang River Basin, China. Zoological Research, 2007, 28(1): 63-67.
    [13] ZHENG De-shu. Apoptosis and Programmed Cell Death. Zoological Research, 2000, 21(1): 17-22.
    [14] LI Fang-man. Ecological Study on The Sibrian Cranes Spring Migration in Lindian Stopover. Zoological Research, 1998, 19(1): 38-52.
    [15] LU Yu-yan, LI Pi-peng. Morphological Studies of Thymic Macrophage in Snake. Zoological Research, 1998, 19(5): 415-416.
    [16] ZHONG Ming-chao, HUANG Zhe. Induced Development of Pigment Macrophage Aggregate (Pma) in Adult and Juvenile of the Freshwater Catfish Silurus asotus L.. Zoological Research, 1996, 17(2): 153-167.
    [17] WANG Gui-ying, HU Jie-yu, YAN Yu-juan. Action of Cytochalasin D on Cells of Mouse Mammary Adenocarcinoma Cell Line (MA782/5S-8102). Zoological Research, 1986, 7(1): 39-45.
    [18] LI Gui-yuan. The Spring Migration of the Black-Naped Oriole Over China. Zoological Research, 1984, 5(4): 304-318.
    [19] LI Ling-yan. Cell Theory. Zoological Research, 1982, 3(zk): 373-374.
    [20] KE Shi-fang, WU De-lian, SHOU Gan-cheng et al.. Studies on the Migration and Development of Necator americanus in Golden Hamsters (Mesocricetus auratus). Zoological Research, 1982, 3(zk): 191-196.
  • ZoolRes-41-1-39-Supplementary Tables and Figures.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (951) PDF downloads(129) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return