[1]
|
null | Allahverdian S , Chaabane C , Boukais K , Francis GA , Bochaton-Piallat ML . 2018. Smooth muscle cell fate and plasticity in atherosclerosis. Cardiovascular Research, 114(4): 540–550. | null | Boyle JJ , Weissberg PL , Bennett MR . 2003. Tumor necrosis factor-alpha promotes macrophage-induced vascular smooth muscle cell apoptosis by direct and autocrine mechanisms. Arteriosclerosis, Thrombosis, and Vascular Biology, 23(9): 1553–1558. | null | Charo IF , Taubman MB . 2004. Chemokines in the pathogenesis of vascular disease. Circulation Research, 95(9): 858–866. | null | Chistiakov DA , Orekhov AN, Bobryshev YV . 2015. Vascular smooth muscle cell in atherosclerosis. Acta Physiologica, 214(1): 33–50. | null | Daugherty A , Tall AR , MJAP Daemen , Falk E , Fisher EA , Garcia-Cardena G , Lusis AJ , Owens P , III, Rosenfeld ME , Virmani R . 2017. Recommendation on design, execution, and reporting of animal atherosclerosis studies: A scientific statement from the american heart association. Arteriosclerosis, Thrombosis, And Vascular Biology, 37(9): E131–E157. | null | Engelking LJ , Cantoria MJ , Xu Y , Liang G . 2018. Developmental and extrahepatic physiological functions of SREBP pathway genes in mice. Seminars in Cell & Developmental Biology, 81: 98–109. | null | Ference BA, Ginsberg HN , Graham I , Ray KK , Packard CJ , Bruckert E , Hegele RA , Krauss RM , Raal FJ , Schunkert H , Watts GF , Borén J , Fazio S , Horton JD , Masana L , Nicholls SJ , Nordestgaard BG , van de Sluis B , Taskinen MR , Tokg?zo?lu L , Landmesser U , Laufs U , Wiklund O , Stock JK , Chapman MJ , Catapano AL . 2017. Low-density lipoproteins cause atherosclerotic cardiovascular disease. | null | Evidence from genetic, epidemiologic, and studies Oclinical . A consensus statement from the European Atherosclerosis Society Consensus Panel. European Heart Journal, 38(32): 2459–2472. | null | GBD 2017 Risk Factor Collaborators . 2018. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 392(10159): 1923–1994. | null | Han KH , Tangirala RK , Green SR , Quehenberger O . 1998. Chemokine receptor CCR2 expression and monocyte chemoattractant protein-1-mediated chemotaxis in human monocytes. A regulatory role for plasma LDL. Arteriosclerosie, Thrombosis, and Vascular Biology, 18(12): 1983–1991. | null | Hansson GK , Libby P . 2006. The immune response in atherosclerosis: a double-edged sword. Nature Reviews Immunology, 6(7): 508–519. | null | Hwang HJ , Jung TW , Kim BH , Hong HC , Seo JA , Kim SG , Kim NH , Choi KM , Choi DS , Baik SH , Yoo HJ . 2015. A dipeptidyl peptidase-IV inhibitor improves hepatic steatosis and insulin resistance by AMPK-dependent and JNK-dependent inhibition of LECT2 expression. Biochemical Pharmacoloyg, 98(1): 157–166. | null | Johnson JL . 2007. Matrix metalloproteinases: influence on smooth muscle cells and atherosclerotic plaque stability. Expert Review Cardiovascular Therapy, 5(2): 265–282. | null | Jung TW , Chung YH , Kim HC , Abd El-Aty AM , Jeong JH . 2018. LECT2 promotes inflammation and insulin resistance in adipocytes via P38 pathways. Journal of Molecular Endocrinology, 61(1): 37–45. | null | L'Hermitte A , Pham S , Cadoux M , Couchy G , Caruso S , Anson M , Crain-Denoyelle AM , Celton-Morizur S , Yamagoe S , Zucman-Rossi J , Desdouets C , Couty JP . 2019. Lect2 controls inflammatory monocytes to constrain the growth and progression of hepatocellular carcinoma. Hepatology, 69(1): 160–178. | null | Lim S , Park S . 2014. Role of vascular smooth muscle cell in the inflammation of atherosclerosis. BMB Reports, 47(1): 1–7. | null | Lu XJ , Chen J , Yu CH , Shi YH , He YQ , Zhang RC , Huang ZA , Lv JN , Zhang S , Xu L . 2013. LECT2 protects mice against bacterial sepsis by activating macrophages via the CD209a receptor. Journal of Experimental Medicine, 210(1): 5–13. | null | Lu XJ , Chen Q , Rong YJ , Yang GJ , Li CH , Xu NY , Yu CH , Wang HY , Zhang S , Shi YH , Chen J . 2016. LECT2 drives haematopoietic stem cell expansion and mobilization via regulating the macrophages and osteolineage cells. Nature Communications, 7: 12719. | null | Moore KJ , Tabas I . 2011. Macrophages in the pathogenesis of atherosclerosis. Cell, 145(3): 341–355. | null | Mozaffarian D , Benjamin EJ , Go AS , Arnett DK , Blaha MJ , Cushman M , Das SR , de Ferranti S , Despres JP , Fullerton HJ , Howard VJ , Huffman MD , Isasi CR , Jimenez MC , Judd SE , Kissela BM , Lichtman JH , Lisabeth LD , Liu S , Mackey RH , Magid DJ , McGuire DK , Mohler ER , 3rd, Moy CS , Muntner P , Mussolino ME , Nasir K , Neumar RW , Nichol G , Palaniappan L , Pandey DK , Reeves MJ , Rodriguez CJ , Rosamond W , Sorlie PD , Stein J , Towfighi A , Turan TN , Virani SS , Woo D , Yeh RW , Turner MB . 2016. Heart disease and stroke statistics-2016 update: A report from the American Heart Association. Circulation, 133(4): e38–360. | null | Müller A , Kr?mer SD , Meletta R , Beck K , Selivanova SV , Rancic Z , Kaufmann PA , Vos B , Meding J , Stellfeld T , Heinrich TK , Bauser M , Hütter J , Dinkelborg LM , Schibli R , Ametamey SM . 2014. Gene expression levels of matrix metalloproteinases in human atherosclerotic plaques and evaluation of radiolabeled inhibitors as imaging agents for plaque vulnerability. Nuclear Medicine and Biology, 41(7): 562–569. | null | Okumura A , Saito T , Otani I , Kojima K , Yamada Y , Ishida-Okawara A , Nakazato K , Asano M , Kanayama K , Iwakura Y , Suzuki K , Yamagoe S . 2008. Suppressive role of leukocyte cell-derived chemotaxin 2 in mouse anti-type II collagen antibody-induced arthritis. Arthritis & Rheumatism, 58(2): 413–421. | null | Ovejero C , Cavard C , Périanin A , Hakvoort T , Vermeulen J , Godard C , Fabre M , Chafey P , Suzuki K , Romagnolo B , Yamagoe S , Perret C . 2004. Identification of the leukocyte cell-derived chemotaxin 2 as a direct target gene of β-catenin in the liver. Hepatology, 40(1): 167–176. | null | Sargeant JA , Aithal GP , Takamura T , Misu H , Takayama H , Douglas JA , Turner MC , Stensel DJ , Nimmo MA , Webb DR , Yates T , King JA . 2018. The influence of adiposity and acute exercise on circulating hepatokines in normal-weight and overweight/obese men. Applied Physiology, Nutrition, and Metabolism, 43(5): 482–490. | null | Slowik V , Apte U . 2017. Leukocyte Cell-Derived Chemotaxin-2: It's role in pathophysiology and future in clinical medicine. Clinical and Translational Science, 10(4): 249–259. | null | Wang Y , Ding WX , Li T . 2018. Cholesterol and bile acid-mediated regulation of autophagy in fatty liver diseases and atherosclerosis. Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids, 1863(7): 726–733. | null | Wolf D , Ley K . 2019. Immunity and inflammation in atherosclerosis. Circulation Research, 124(2): 315–327. | null | Yamagoe S , Mizuno S , Suzuki K . 1998. Molecular cloning of human and bovine LECT2 having a neutrophil chemotactic activity and its specific expression in the liver. Biochimica et Biophysica Acta, 1396(1): 105–113. | null | Ye J , DeBose-Boyd RA . 2011. Regulation of cholesterol and fatty acid synthesis. Cold Spring Harbor Perspectives in Biology, 3(7): a004754. | null | Yoo HJ , Choi KM . 2015. Hepatokines as a link between obesity and cardiovascular diseases. Diabetes & Metabolism Journal, 39(1): 10–15. | null | Yoo HJ , Hwang SY , Choi JH , Lee HJ , Chung HS , Seo JA , Kim SG , Kim NH , Baik SH , Choi DS , Choi KM . 2017. Association of leukocyte cell-derived chemotaxin 2 (LECT2) with NAFLD, metabolic syndrome, and atherosclerosis. PLoS One, 12(4): e0174717. | null | Zhang Z , Zeng H , Lin J , Hu Y , Yang R , Sun J , Chen R , Chen H . 2018. Circulating LECT2 levels in newly diagnosed type 2 diabetes mellitus and their association with metabolic parameters: An observational study. Medicine, 97(15): e0354. | null | Zhong S , Zhao L , Li Q , Yang P , Varghese Z , Moorhead JF , Chen Y , Ruan XZ . 2015. Inflammatory stress exacerbated mesangial foam cell formation and renal injury via disrupting cellular cholesterol homeostasis. Inflammation, 38(3): 959–971. |
|