Volume 40 Issue 2
Mar.  2019
Turn off MathJax
Article Contents
Ruo-Han Qi, Yan Chen, Zhi-Lai Guo, Fen Zhang, Zheng Fang, Kai Huang, Hai-Ning Yu, Yi-Peng Wang. Identification and characterization of two novel cathelicidins from the frog Odorrana livida. Zoological Research, 2019, 40(2): 94-101. doi: 10.24272/j.issn.2095-8137.2018.062
Citation: Ruo-Han Qi, Yan Chen, Zhi-Lai Guo, Fen Zhang, Zheng Fang, Kai Huang, Hai-Ning Yu, Yi-Peng Wang. Identification and characterization of two novel cathelicidins from the frog Odorrana livida. Zoological Research, 2019, 40(2): 94-101. doi: 10.24272/j.issn.2095-8137.2018.062

Identification and characterization of two novel cathelicidins from the frog Odorrana livida

doi: 10.24272/j.issn.2095-8137.2018.062
Funds:   
More Information
  • Corresponding author: Hai-Ning Yu,Yi-Peng Wang,E-mail:yuhaining@dlut.edu.cn; yipengwang@suda.edu.cn
  • Publish Date: 2019-03-18
  • Antimicrobial peptides (AMPs) are a group of gene-encoded small peptides that play pivotal roles in the host immune system of multicellular organisms. Cathelicidins are an important family of AMPs that exclusively exist in vertebrates. Many cathelicidins have been identified from mammals, birds, reptiles and fish. To date, however, cathelicidins from amphibians are poorly understood. In the present study, two novel cathelicidins (OL-CATH1 and 2) were identified and studied from the odorous frog Odorrana livida. Firstly, the cDNAs encoding the OL-CATHs (780 and 735 bp in length, respectively) were successfully cloned from a lung cDNA library constructed for the frog. Multi-sequence alignment was carried out to analyze differences between the precursors of the OL-CATHs and other representative cathelicidins. Mature peptide sequences of OL-CATH1 and 2 were predicted (33 amino acid residues) and their secondary structures were determined (OL-CATH1 showed a random-coil conformation and OL-CATH2 demonstrated a-helical conformation). Furthermore, OL-CATH1 and 2 were chemically synthesized and their in vitro functions were determined. Antimicrobial and bacterial killing kinetic analyses indicated that OL-CATH2 demonstrated relatively moderate and rapid antimicrobial potency and exhibited strong anti-inflammatory activity. At very low concentrations (10 μg/mL), OL-CATH2 significantly inhibited the lipopolysaccharide (LPS)-induced transcription and production of pro-inflammatory cytokines TNF-a, IL-1b and IL-6 in mouse peritoneal macrophages. In contrast, OL-CATH1 did not exhibit any detectable antimicrobial or anti-inflammatory activities. Overall, identification of these OL-CATHs from O. livida enriches our understanding of the functions of cathelicidins in the amphibian immune system. The potent antimicrobial and anti-inflammatory activities of OL-CATH2 highlight its potential as a novel candidate in anti-infective drug development.
  • loading
  • Relative Articles

    [1] James Mwangi, Xue Hao, Ren Lai, Zhi-Ye Zhang. Antimicrobial peptides: new hope in the war against multidrug resistance. Zoological Research, 2019, 40(6): 488-505.  doi: 10.24272/j.issn.2095-8137.2019.062
    [2] Jing Wang, Zhen-Bao Ma, Zhen-Ling Zeng, Xue-Wen Yang, Ying Huang, Jian-Hua Liu. Response to Comment on “The role of wildlife (wild birds) in the global transmission of antimicrobial resistance genes”. Zoological Research, 2017, 38(4): 212-212.  doi: 10.24272/j.issn.2095-8137.2017.024
    [3] Mashkoor Mohsin, Shahbaz Raza. Comment on “The role of wildlife (wild birds) in the global transmission of antimicrobial resistance genes”. Zoological Research, 2017, 38(4): 211-211.  doi: 10.24272/j.issn.2095-8137.2017.023
    [4] Jing Wang, Zhen-Bao Ma, Zhen-Ling Zeng, Xue-Wen Yang, Ying Huang, Jian-Hua Liu. The role of wildlife (wild birds) in the global transmission of antimicrobial resistance genes. Zoological Research, 2017, 38(2): 55-80.  doi: 10.24272/j.issn.2095-8137.2017.003
    [5] Jing YANG, Xin-Jiang LU, Fang-Chao CHAI, Jiong CHEN. Molecular characterization and functional analysis of a piscidin gene in large yellow croaker (Larimichthys crocea). Zoological Research, 2016, 37(6): 347-355.  doi: 10.13918/j.issn.2095-8137.2016.6.347
    [6] Cun-Bao LIU, Bin SHAN, Hong-Mei BAI, Jing TANG, Long-Zong YAN, Yan-Bing MA. Hydrophilic/hydrophobic characters of antimicrobial peptides derived from animals and their effects on multidrug resistant clinical isolates. Zoological Research, 2015, 36(1): 41-47.  doi: 10.13918/j.issn.2095-8137.2015.1.41
    [7] Bai-Yu ZHANG, Si-Man LI, Zheng-Hua GAO, Ji-Hong SHEN. Protective effects of snake venom antimicrobial peptide OH-CATH on E. coli induced rabbit urinary tract infection models. Zoological Research, 2013, 34(1): 25-32.  doi: 10.3724/SP.J.1141.2013.01027
    [8] LI Sheng-An, LEE Wen-Hui, ZHANG Yun. Two bacterial infection models in tree shrew for evaluating the efficacy of antimicrobial agents. Zoological Research, 2012, 33(1): 1-6.  doi: 10.3724/SP.J.1141.2012.01001
    [9] GUANG Hui-Juan, LI Zheng, WANG Yi-Peng, LAI Ren, YU Hai-Ning. Progress in cathelicidins antimicrobial peptides research. Zoological Research, 2012, 33(5): 523-526.  doi: 10.3724/SP.J.1141.2012.05523
    [10] WANG Yi-Peng, LAI Ren. Insect Antimicrobial Peptides: Structures, Properties and Gene Regulation. Zoological Research, 2010, 31(1): 27-34.  doi: 10.3724/SP.J.1141.2010.01027
    [11] Chen Xin-xin, Yu guo-yu, ZHAN Yan, Zhang Yun, Shen Ji-hong, Lee We. Effects of the Antimicrobial Peptide OH-CATH on Escherichia coli. Zoological Research, 2009, 30(2): 171-177.  doi: 10.3724/SP.J.1141.2009.02171
    [12] Chen Xin-xin, Yu guo-yu, ZHAN Yan, Zhang Yun, Shen Ji-hong, Lee We. Antibacterial Activity Investigation of Human Semenogelin I Derived Peptides. Zoological Research, 2009, 30(2): 178-184.  doi: 10.3724/SP.J.1141.2009.02178
    [13] ZHANG Ying-xia, ZOU Ai-hui, MANCHU Ri-ga, ZHOU Yong-can, WANG Shi-feng. Purification and Antimicrobial Activity of Antimicrobial Protein from Brown-spotted Grouper, Epinephelus fario. Zoological Research, 2008, 29(6): 627-632.  doi: 10.3724/SP.J.1141.2008.06627
    [14] AN Xian-hui, LV Yi, LI Wei-guo, LIANG Jian-guo, XU Chun-hua, ZHANG Chong-xing et al.. Antimicrobial Peptides Purified from Penus chinensis. Zoological Research, 2005, 26(4): 410-415.
    [15] DING You-zhong, WANG Xiao-ming, WANG Zheng-huan, WU Jian-sheng, John THORBJARNARSON, SHAO Min. Observation of Activity in Chinese Alligators Released During an Early Period at Hongxing of Anhui. Zoological Research, 2004, 25(1): 27-31.
    [16] LAI Ren, LIANG Jian-guo, ZHANG Yun. Antimicrobial Peptides in Amphibian Skins and Their Application. Zoological Research, 2004, 25(5): 465-468.
    [17] YANG Xiao-jun, WEN Xian-ji, YANG Lan. Feeding Activity of Lady Amherst's Pheasant (Chrysolophus amherstiae) in Captivity. Zoological Research, 1994, 15(1): 49-54.
    [18] , , , , . Function of Activity of Platelet Aggregation and Platelet Count on Cancer Patients. Zoological Research, 1987, 8(zk): 38-46.
    [19] , , , , , , . Function of Activity of Platelet Aggregation and Platelet Count on Human Leukemin. Zoological Research, 1987, 8(zk): 22-32.
    [20] ZHANG Hong-ji, XIAO Chang-hua, TANG Shao-zong, YANG Jun-ru. Study on Isolation From The Venom of Agkistrodon acutus and Its Biological Activity. Zoological Research, 1980, 1(2): 157-162.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1074) PDF downloads(511) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return