Volume 40 Issue 3
May  2019
Turn off MathJax
Article Contents
David M. Irwin. Duplication and diversification of insulin genes in ray-finned fish. Zoological Research, 2019, 40(3): 185-197. doi: 10.24272/j.issn.2095-8137.2018.052
Citation: David M. Irwin. Duplication and diversification of insulin genes in ray-finned fish. Zoological Research, 2019, 40(3): 185-197. doi: 10.24272/j.issn.2095-8137.2018.052

Duplication and diversification of insulin genes in ray-finned fish

doi: 10.24272/j.issn.2095-8137.2018.052
More Information
  • Corresponding author: David M. Irwin
  • Received Date: 2018-05-07
  • Publish Date: 2019-05-18
  • Insulin is a key hormone for the regulation of metabolism in vertebrates. Insulin is produced by pancreatic islet cells in response to elevated glucose levels and leads to the uptake of glucose by tissues such as liver and adipose tissue to store energy. Insulin also has additional functions in regulating development. Previous work has shown that the proglucagon gene, which encodes hormones counter regulating insulin, is duplicated in teleost fish, and that the peptide hormones encoded by these genes have diversified in function. I sought to determine whether similar processes have occurred to insulin genes in these species. Searches of fish genomes revealed an unexpected diversity of insulin genes. A triplication of the insulin gene occurred at the origin of teleost fish, however one of these three genes, insc, has been lost in most teleost fish lineages. The two other insulin genes, insa and insb, have been retained but show differing levels of selective constraint suggesting that they might have diversified in function. Intriguingly, a duplicate copy of the insa gene, which I named insab, is found in many fish. The coding sequence encoded by insab genes is under weak selective constraint, with its predicted protein sequences losing their potential to be processed into a two-peptide hormone. However, these sequences have retained perfectly conserved cystine residues, suggesting that they maintain insulin’s three-dimensional structure and therefore might modulate the processing and secretion of insulin produced by the other genes.
  • loading
  • Relative Articles

    [1] Zongji Wang, Guangji Chen, Guojie Zhang, Qi Zhou. Dynamic evolution of transposable elements, demographic history and gene content of paleognathous birds. Zoological Research,  doi: 10.24272/j.issn.2095-8137.2020.175
    [2] Yang Yang, Li-Na Wu, Jing-Fang Chen, Xi Wu, Jun-Hong Xia, Zi-Ning Meng, Xiao-Chun Liu, Hao-Ran Lin. Whole-genome sequencing of leopard coral grouper (Plectropomus leopardus) and exploration of regulation mechanism of skin color and adaptive evolution. Zoological Research, 2020, 41(3): 328-340.  doi: 10.24272/j.issn.2095-8137.2020.038
    [3] Bao Wang, Lei Chen, Wen Wang. Genomic insights into ruminant evolution: from past to future prospects. Zoological Research, 2019, 40(6): 476-487.  doi: 10.24272/j.issn.2095-8137.2019.061
    [4] Qiong-Ying TANG, Li-Xia SHI, Fei LIU, Dan YU, Huan-Zhang LIU. Evolution and phylogenetic application of the MC1R gene in the Cobitoidea (Teleostei: Cypriniformes). Zoological Research, 2016, 37(5): 281-289.  doi: 10.13918/j.issn.2095-8137.2016.5.281
    [5] Qiang CHEN, Xin-Jiang LU, Ming-Yun LI, Jiong CHEN. Molecular cloning, pathologically-correlated expression and functional characterization of the colonystimulating factor 1 receptor (CSF-1R) gene from a teleost, Plecoglossus altivelis. Zoological Research, 2016, 37(2): 96-102.  doi: 10.13918/j.issn.2095-8137.2016.2.96
    [6] David M. IRWIN. Genomic organization and evolution of ruminant lysozyme c genes. Zoological Research, 2015, 36(1): 1-17.  doi: 10.13918/j.issn.2095-8137.2015.1.1
    [7] Yu-Mei TIAN, Jie CHEN, Yang TAO, Xia-Yun JIANG, Shu-Ming ZOU. Molecular cloning and function analysis of insulin-like growth factor-binding protein 1a in blunt snout bream (Megalobrama amblycephala). Zoological Research, 2014, 35(4): 300-306.  doi: 10.13918/j.issn.2095-8137.2014.4.300
    [8] Yan-Ni ZENG, Yong-Yi SHEN, Ya-Ping ZHANG. Genome-wide scan reveals the molecular mechanisms of functional differentiation of Myotis lucifugus and Pteropus vampyrus. Zoological Research, 2013, 34(3): 221-227.  doi: 10.11813/j.issn.0254-5853.2013.3.0221
    [9] CHEN Xing, SHEN Yong-Yi, ZHANG Ya-Ping. Review of mtDNA in molecular evolution studies. Zoological Research, 2012, 33(6): 566-573.  doi: 10.3724/SP.J.1141.2012.06566
    [10] LIU Jia, KONG Qing-Peng. Energy metabolism pathway related genes and adaptive evolution of tumor cells. Zoological Research, 2012, 33(6): 557-565.  doi: 10.3724/SP.J.1141.2012.06557
    [11] CHANG Yue, FENG Li-Fang, XIONG Jie, MIAO Wei. Function comparison and evolution analysis of metallothionein gene MTT2 and MTT4 in Tetrahymena thermophila. Zoological Research, 2011, 32(5): 476-484.  doi: 10.3724/SP.J.1141.2011.05476
    [12] ZHOU Rui-Xue MENG Tao, Meng Hai-Bo, HENG Dun-Xue BIN Shi-Yu CHENG Jia, FU Gui-Hong, CHU Wu-Ying, *, ZHANG Jian-She , *. Selection of Reference Genes in Transcription Analysis of Gene Expression of the Mandarin Fish, Siniperca chuasti. Zoological Research, 2010, 31(2): 141-146.  doi: 10.3724/SP.J.1141.2010.02141
    [13] TIAN Hai-Feng, WEN Jian-Fan. Diversity of Parasitic Protozoan Mitochondria and Adaptive Evolution. Zoological Research, 2010, 31(1): 35-38.  doi: 10.3724/SP.J.1141.2010.01035
    [14] CHENG Xiao-chun, LIN Dan-jun, YOU Yong-long*. Influence of Temperature on Sex Differentiation of Teleost, Pseudobagrus vachelli. Zoological Research, 2007, 28(1): 73-80.
    [15] YANG Dong-shan, GUO Xu-dong, HAI Tang, DU Chen-guang, ANG Jian-guo, CANG Ming, LIU Dong-jun, LI Xi-he, BOU Shor-. Human Pro-insulin Transgenic Calf Derived from Somatic Cell Nuclear Transfer. Zoological Research, 2007, 28(4): 409-416.
    [16] GAO Jia-li, LUO Yu-ping*, LI Si-guang. Molecular Evolution of miR-34 Gene Family. Zoological Research, 2007, 28(3): 271-278.
    [17] ZHOU Li, WANG Yang, GUI Jian-fang , *. Fish-Specific Genome Duplication. Zoological Research, 2006, 27(5): 525-532.
    [18] ZHANG Ming, HOU Rong, LIU Yu-liang, ZHENG Hong-pei, ZHU Qing, ZHANG Zhi-he, XIAN Hong. Effects of Epidermal Growth Factor and Insulin on Biological Characteristics of Giant Panda (Ailuropoda melanoleuca) Cutaneous Fibroblast in Vitro. Zoological Research, 2005, 26(5): 499-505.
    [19] BAI Jun-Jie, LAO Hai-Hua, YE Xing, LI Ying-Hua, LUO Jian-Ren. Molecular Cloning and Sequence Analysis of Insulin-like Growth Factor-Ⅰ cDNA from Bluntnose Bream (Megalobrama amblycephala). Zoological Research, 2001, 22(6): 502-506.
    [20] ZHENG Yuan-Lin, HAN Zheng-Kang, CHEN Jie, AI Xiao-Jie, LIU Gen-Tao. Effects of Clenbuterol on IGF-Ⅰ,GH and Insulin Level of Hepatic Blood in Sheep. Zoological Research, 2001, 22(3): 246-249.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (649) PDF downloads(213) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint